Connection looseness detection of steel grid structures using piezoceramic transducers
Connection looseness phenomena of steel grid structures might induce issues of lowering integrity, large deformation, even total collapse of the structures. The goal of this article is to propose an evaluation method for bolt-sphere joint looseness of steel grid structures using piezoceramic guided...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2018-02-01
|
Series: | International Journal of Distributed Sensor Networks |
Online Access: | https://doi.org/10.1177/1550147718759234 |
id |
doaj-ca325c16d4cc47e6977649a1104be907 |
---|---|
record_format |
Article |
spelling |
doaj-ca325c16d4cc47e6977649a1104be9072020-11-25T03:39:18ZengSAGE PublishingInternational Journal of Distributed Sensor Networks1550-14772018-02-011410.1177/1550147718759234Connection looseness detection of steel grid structures using piezoceramic transducersShi Yan0Weiling Liu1Gangbing Song2Putian Zhao3Shuai Zhang4School of Civil Engineering, Shenyang Jianzhu University, Shenyang, ChinaSchool of Civil Engineering, Shenyang Jianzhu University, Shenyang, ChinaDepartment of Mechanical Engineering, University of Houston, Houston, TX, USASchool of Civil Engineering, Shenyang Jianzhu University, Shenyang, ChinaSchool of Civil Engineering, Shenyang Jianzhu University, Shenyang, ChinaConnection looseness phenomena of steel grid structures might induce issues of lowering integrity, large deformation, even total collapse of the structures. The goal of this article is to propose an evaluation method for bolt-sphere joint looseness of steel grid structures using piezoceramic guided wave–based method through experiments and numerical simulations. A single bolt-sphere joint looseness experimental model is established and tested, considering grid member connection angles of 0°, 45°, 90°, and 180°, respectively. Then, multiple bolt-sphere joint looseness detection tests by selecting six kinds of cases for a steel grid structure model are performed. Piezoceramic patch arrays bonded on the surface of grid members are used as transducers to generate and receive detection guided waves, and external torques are applied to indirectly simulate the bolt-sphere joint looseness effect. The experimental results show that the bolt-sphere joint looseness impact on the ultrasonic wave energy attenuation has a nonlinear regularity. Based on the regularity, an evaluation method and key techniques for the bolt-sphere joint looseness detection based on guided wave energy are proposed and experimentally validated. To further clarify the bolt-sphere joint looseness detection mechanism, the ABAQUS software is used for a finite element analysis of the single bolt-sphere joint looseness evaluation. The numerical and experimental results match well, verifying the feasibility of the proposed method.https://doi.org/10.1177/1550147718759234 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shi Yan Weiling Liu Gangbing Song Putian Zhao Shuai Zhang |
spellingShingle |
Shi Yan Weiling Liu Gangbing Song Putian Zhao Shuai Zhang Connection looseness detection of steel grid structures using piezoceramic transducers International Journal of Distributed Sensor Networks |
author_facet |
Shi Yan Weiling Liu Gangbing Song Putian Zhao Shuai Zhang |
author_sort |
Shi Yan |
title |
Connection looseness detection of steel grid structures using piezoceramic
transducers |
title_short |
Connection looseness detection of steel grid structures using piezoceramic
transducers |
title_full |
Connection looseness detection of steel grid structures using piezoceramic
transducers |
title_fullStr |
Connection looseness detection of steel grid structures using piezoceramic
transducers |
title_full_unstemmed |
Connection looseness detection of steel grid structures using piezoceramic
transducers |
title_sort |
connection looseness detection of steel grid structures using piezoceramic
transducers |
publisher |
SAGE Publishing |
series |
International Journal of Distributed Sensor Networks |
issn |
1550-1477 |
publishDate |
2018-02-01 |
description |
Connection looseness phenomena of steel grid structures might induce issues of lowering integrity, large deformation, even total collapse of the structures. The goal of this article is to propose an evaluation method for bolt-sphere joint looseness of steel grid structures using piezoceramic guided wave–based method through experiments and numerical simulations. A single bolt-sphere joint looseness experimental model is established and tested, considering grid member connection angles of 0°, 45°, 90°, and 180°, respectively. Then, multiple bolt-sphere joint looseness detection tests by selecting six kinds of cases for a steel grid structure model are performed. Piezoceramic patch arrays bonded on the surface of grid members are used as transducers to generate and receive detection guided waves, and external torques are applied to indirectly simulate the bolt-sphere joint looseness effect. The experimental results show that the bolt-sphere joint looseness impact on the ultrasonic wave energy attenuation has a nonlinear regularity. Based on the regularity, an evaluation method and key techniques for the bolt-sphere joint looseness detection based on guided wave energy are proposed and experimentally validated. To further clarify the bolt-sphere joint looseness detection mechanism, the ABAQUS software is used for a finite element analysis of the single bolt-sphere joint looseness evaluation. The numerical and experimental results match well, verifying the feasibility of the proposed method. |
url |
https://doi.org/10.1177/1550147718759234 |
work_keys_str_mv |
AT shiyan connectionloosenessdetectionofsteelgridstructuresusingpiezoceramictransducers AT weilingliu connectionloosenessdetectionofsteelgridstructuresusingpiezoceramictransducers AT gangbingsong connectionloosenessdetectionofsteelgridstructuresusingpiezoceramictransducers AT putianzhao connectionloosenessdetectionofsteelgridstructuresusingpiezoceramictransducers AT shuaizhang connectionloosenessdetectionofsteelgridstructuresusingpiezoceramictransducers |
_version_ |
1724539640260591616 |