Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations

Though multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency.

Bibliographic Details
Main Authors: J. M. Ripalda, J. Buencuerpo, I. García
Format: Article
Language:English
Published: Nature Publishing Group 2018-12-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-018-07431-3
id doaj-ca2058cb97814de0812dcc6103f7579c
record_format Article
spelling doaj-ca2058cb97814de0812dcc6103f7579c2021-05-11T10:21:52ZengNature Publishing GroupNature Communications2041-17232018-12-01911810.1038/s41467-018-07431-3Solar cell designs by maximizing energy production based on machine learning clustering of spectral variationsJ. M. Ripalda0J. Buencuerpo1I. García2Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8Instituto de Energía Solar, Universidad Politécnica de MadridThough multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency.https://doi.org/10.1038/s41467-018-07431-3
collection DOAJ
language English
format Article
sources DOAJ
author J. M. Ripalda
J. Buencuerpo
I. García
spellingShingle J. M. Ripalda
J. Buencuerpo
I. García
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
Nature Communications
author_facet J. M. Ripalda
J. Buencuerpo
I. García
author_sort J. M. Ripalda
title Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
title_short Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
title_full Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
title_fullStr Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
title_full_unstemmed Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
title_sort solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2018-12-01
description Though multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency.
url https://doi.org/10.1038/s41467-018-07431-3
work_keys_str_mv AT jmripalda solarcelldesignsbymaximizingenergyproductionbasedonmachinelearningclusteringofspectralvariations
AT jbuencuerpo solarcelldesignsbymaximizingenergyproductionbasedonmachinelearningclusteringofspectralvariations
AT igarcia solarcelldesignsbymaximizingenergyproductionbasedonmachinelearningclusteringofspectralvariations
_version_ 1721448321191510016