Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
Though multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency.
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2018-12-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-018-07431-3 |
id |
doaj-ca2058cb97814de0812dcc6103f7579c |
---|---|
record_format |
Article |
spelling |
doaj-ca2058cb97814de0812dcc6103f7579c2021-05-11T10:21:52ZengNature Publishing GroupNature Communications2041-17232018-12-01911810.1038/s41467-018-07431-3Solar cell designs by maximizing energy production based on machine learning clustering of spectral variationsJ. M. Ripalda0J. Buencuerpo1I. García2Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8Instituto de Energía Solar, Universidad Politécnica de MadridThough multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency.https://doi.org/10.1038/s41467-018-07431-3 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
J. M. Ripalda J. Buencuerpo I. García |
spellingShingle |
J. M. Ripalda J. Buencuerpo I. García Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations Nature Communications |
author_facet |
J. M. Ripalda J. Buencuerpo I. García |
author_sort |
J. M. Ripalda |
title |
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
title_short |
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
title_full |
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
title_fullStr |
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
title_full_unstemmed |
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
title_sort |
solar cell designs by maximizing energy production based on machine learning clustering of spectral variations |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2018-12-01 |
description |
Though multijunction solar cells can exceed silicon technology in terms of standard efficiency, the uncertainty in solar spectral changes impacts its energy production. Here, the authors use machine learning techniques to predict the optimal solar cell designs in terms of yearly averaged efficiency. |
url |
https://doi.org/10.1038/s41467-018-07431-3 |
work_keys_str_mv |
AT jmripalda solarcelldesignsbymaximizingenergyproductionbasedonmachinelearningclusteringofspectralvariations AT jbuencuerpo solarcelldesignsbymaximizingenergyproductionbasedonmachinelearningclusteringofspectralvariations AT igarcia solarcelldesignsbymaximizingenergyproductionbasedonmachinelearningclusteringofspectralvariations |
_version_ |
1721448321191510016 |