Summary: | The analysis was carried out in order to clarify the estimates of the expected restrictions on characteristics of new-generation mobile communications (4G, 5G) under the existing restrictions on radiated power of subscriber radio equipment, as well as in conditions where the boundaries of urban sites are outside of the area of free radio waves propagation (RWP) between subscriber and base stations. Analysis was performed using the basic principles and ensemble models of statistical theory of electromagnetic environment, as well as the basic principles of information theory that determines the radio channel capacity in presence of interference. Frequency-independent relationships have been obtained for estimating a number of system parameters of cellular communications under the conditions of multipath RWP in urban canyons and the presence of internal system interference: estimation the required equivalent isotropic radiated power (EIRP) of subscriber stations, the maximum data transmission capacity of the backward radio channel, the maximum distance of qualitative communication, and also the permissible level of internal radio interference at given requirements for communication range, and the information transfer rate of reverse radio channel taking into account the accepted restrictions on EIRP of subscriber radio equipment. The obtained relations allowus to estimate the limits of possible values of these system parameters of modern and future mobile communications; these relations also provide the opportunity to justify the quality requirements for ensuring the intra-system electromagnetic compatibility at the required data rate in backward radio channels of cellular networks and the existing restrictions on EIRP of subscriber stations.
|