Compactness for a Schrodinger operator in the ground-state space over $mathbb{R}^N$

We investigate the compactness of the resolvent $(mathcal{A} - lambda I)^{-1}$ of the Schrodinger operator $mathcal{A} = - Delta + q(x)ullet$ acting on the Banach space $X$,$$ X = { fin L^2(mathbb{R}^N): f / varphiin L^infty(mathbb{R}^N) } ,quad | f|_X = mathop{m ess,sup}_{mathbb{R}^N} (|f| / varp...

Full description

Bibliographic Details
Main Authors: Benedicte Alziary, Peter Takac
Format: Article
Language:English
Published: Texas State University 2007-05-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/conf-proc/16/a4/abstr.html

Similar Items