Hybrid Deduction–Refutation Systems

Hybrid deduction–refutation systems are deductive systems intended to derive both valid and non-valid, i.e., semantically refutable, formulae of a given logical system, by employing together separate derivability operators for each of these and combining ‘hybrid derivation rules’ that involve both d...

Full description

Bibliographic Details
Main Author: Valentin Goranko
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/8/4/118
Description
Summary:Hybrid deduction–refutation systems are deductive systems intended to derive both valid and non-valid, i.e., semantically refutable, formulae of a given logical system, by employing together separate derivability operators for each of these and combining ‘hybrid derivation rules’ that involve both deduction and refutation. The goal of this paper is to develop a basic theory and ‘meta-proof’ theory of hybrid deduction–refutation systems. I then illustrate the concept on a hybrid derivation system of natural deduction for classical propositional logic, for which I show soundness and completeness for both deductions and refutations.
ISSN:2075-1680