A characterisation of infinity-harmonic and p-harmonic maps via affine variations in L-infinity

Let $u: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^N$ be a smooth map and $n,N \in \mathbb{N}$. The $\infty$-Laplacian is the PDE system $$ \Delta_\infty u :=\Big(Du \otimes Du + |Du|^2[Du]^\bot \otimes I\Big) :D^2u = 0, $$ where $[Du]^\bot := \hbox{Proj}_{R(Du)^\bot}$. This system constitu...

Full description

Bibliographic Details
Main Author: Nikos Katzourakis
Format: Article
Language:English
Published: Texas State University 2017-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2017/29/abstr.html