A characterisation of infinity-harmonic and p-harmonic maps via affine variations in L-infinity
Let $u: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^N$ be a smooth map and $n,N \in \mathbb{N}$. The $\infty$-Laplacian is the PDE system $$ \Delta_\infty u :=\Big(Du \otimes Du + |Du|^2[Du]^\bot \otimes I\Big) :D^2u = 0, $$ where $[Du]^\bot := \hbox{Proj}_{R(Du)^\bot}$. This system constitu...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2017-01-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2017/29/abstr.html |