Comparative Analysis of Biodiesels from Calabash and Rubber Seeds Oils

Physicochemical properties of biodiesel from vegetable oils depend on the inherent properties of the oil-producing seeds. The purpose of this study is to investigate the physicochemical properties of biodiesels extracted from calabash and rubber seeds oils, as well as their combined oil mixtures wit...

Full description

Bibliographic Details
Main Authors: J.O. Awulu, G.O. Ogbeh, N.D. Asawa
Format: Article
Language:English
Published: Diponegoro University 2015-07-01
Series:International Journal of Renewable Energy Development
Online Access:http://ejournal.undip.ac.id/index.php/ijred/article/view/8638
Description
Summary:Physicochemical properties of biodiesel from vegetable oils depend on the inherent properties of the oil-producing seeds. The purpose of this study is to investigate the physicochemical properties of biodiesels extracted from calabash and rubber seeds oils, as well as their combined oil mixtures with a view to ascertaining the most suitable for biodiesel production. Calabash and rubber seeds oils were separately extracted through the use of a mechanical press with periodic addition of water. Biodiesels were produced from each category of the oils by transesterification of the free fatty acid (FFA) with alcohol under the influence of a catalyst in batch process. The physicochemical properties of the biodiesels were investigated and comparatively analysed. The results obtained indicated an average of 1.40 wt% FFA for biodiesel produced from the purified calabash oil, which has a specific gravity of 0.920, pH of 5.93, flash point of 116 0C, fire point of 138 0C, cloud point of 70 0C, pour point of -4 0C, moisture content of 0.82 wt% and specific heat capacity of 5301 J/kgK. Conversely, the results obtained for biodiesel produced from the purified rubber oil showed an average of 33.66 wt% FFA, specific gravity of 0.885, pH of 5.51, flash point of 145 0C, fire point of 170 0C, cloud point of 10 0C, pour point of 4 0C, moisture content of 1.30 wt% and specific heat capacity of 9317 J/kgK. However, results obtained for biodiesel produced from the combined oil mixtures indicated an average of 19.77 wt% FFA content, specific gravity of 0.904, API gravity of 25.036, pH value of 5.73, flash point of 157 0C, Fire point of 180 0C, cloud point of 9 0C, pour point of 5 0C, moisture content of 0.93 wt% and specific heat capacity of 6051 J/kgK. Biodiesel produced from calabash seed oil is superior in quality to rubber seed oil, particularly in terms of its low FFA and moisture contents.
ISSN:2252-4940