A Fine Balance of Dietary Lipids Improves Pathology of a Murine Model of VCP-Associated Multisystem Proteinopathy.

The discovery of effective therapies and of disease mechanisms underlying valosin containing protein (VCP)-associated myopathies and neurodegenerative disorders remains elusive. VCP disease, caused by mutations in the VCP gene, are a clinically and genetically heterogeneous group of disorders with m...

Full description

Bibliographic Details
Main Authors: Katrina J Llewellyn, Naomi Walker, Christopher Nguyen, Baichang Tan, Lbachir BenMohamed, Virginia E Kimonis, Angèle Nalbandian
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4489713?pdf=render
Description
Summary:The discovery of effective therapies and of disease mechanisms underlying valosin containing protein (VCP)-associated myopathies and neurodegenerative disorders remains elusive. VCP disease, caused by mutations in the VCP gene, are a clinically and genetically heterogeneous group of disorders with manifestations varying from hereditary inclusion body myopathy, Paget's disease of bone, frontotemporal dementia (IBMPFD), and amyotrophic lateral sclerosis (ALS). In the present study, we examined the effects of higher dietary lipid percentages on VCPR155H/R155H, VCPR155H/+ and Wild Type (WT) mice from birth until 15 months of age by immunohistochemical and biochemical assays. Findings illustrated improvement in the muscle strength, histology, and autophagy signaling pathway in the heterozygote mice when fed 9% lipid-enriched diets (LED). However, increasing the LED by 12%, 30%, and 48% showed no improvement in homozygote and heterozygote survival, muscle pathology, lipid accumulation or the autophagy cascade. These findings suggest that a balanced lipid supplementation may have a therapeutic strategy for patients with VCP-associated multisystem proteinopathies.
ISSN:1932-6203