Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients

Shuang Wu,1,2,* Yining Jiao,3,* Yafang Zhang,1,2 Xuhua Ren,3 Ping Li,2,4 Qi Yu,1,2 Qing Zhang,2,4 Qian Wang,3 Shen Fu1,2,5,6 1Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, People’s Republic of China; 2Shanghai Engineerin...

Full description

Bibliographic Details
Main Authors: Wu S, Jiao Y, Zhang Y, Ren X, Li P, Yu Q, Zhang Q, Wang Q, Fu S
Format: Article
Language:English
Published: Dove Medical Press 2019-10-01
Series:Cancer Management and Research
Subjects:
MRI
Online Access:https://www.dovepress.com/imaging-based-individualized-response-prediction-of-carbon-ion-radioth-peer-reviewed-article-CMAR
id doaj-c9bf9abd21da42378ba06c4662606a78
record_format Article
spelling doaj-c9bf9abd21da42378ba06c4662606a782020-11-25T02:01:23ZengDove Medical PressCancer Management and Research1179-13222019-10-01Volume 119121913149315Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer PatientsWu SJiao YZhang YRen XLi PYu QZhang QWang QFu SShuang Wu,1,2,* Yining Jiao,3,* Yafang Zhang,1,2 Xuhua Ren,3 Ping Li,2,4 Qi Yu,1,2 Qing Zhang,2,4 Qian Wang,3 Shen Fu1,2,5,6 1Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, People’s Republic of China; 2Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China; 3Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 4Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China; 5Key Laboratory of Nuclear Physics and Ion-beam Application MOE, Fudan University, Shanghai, People’s Republic of China; 6Department of Radiation Oncology, Shanghai Concord Cancer Hospital, Shanghai, People’s Republic of China*These authors contributed equally to this workCorrespondence: Shen FuDepartment of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, No. 4365 Kang Xin Road, Shanghai 201321, People’s Republic of ChinaEmail shen_fu@hotmail.comQian WangInstitute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954 Hua Shan Road, Shanghai 200030, People’s Republic of ChinaEmail wang.qian@sjtu.edu.cnPurpose: To explore the value of the pre-treatment MRI radiomic features in individualized prediction of the therapeutic response of carbon ion radiotherapy (CIRT) for prostate cancer patients.Patients and methods: Twenty-three patients with localized prostate cancer treated by CIRT were enrolled for analysis. Prostate tumors were manually delineated on T2-weighted (T2w) images and apparent diffusion coefficient (ADC) maps acquired before CIRT. Abundant radiomic features were extracted from the delineations, which were randomly deformed to account for delineation uncertainty. The robust features were selected and then compared between patient groups of different CIRT responses. Support vector machine (SVM) was subsequently applied to demonstrate the role of the radiomic features to predict individualized CIRT response in the way of artificial intelligence.Results: Radiomic features from ADC had significantly higher intra-correlation coefficient (ICC) (0.71±0.28) than T2w features (0.60±0.31) (p<0.01), indicating higher robustness of ADC features against delineation uncertainty. More features were excellently robust in ADC (58.2% of all the radiomic feature candidates, compared to 41.3% in T2w). By combining the excellently robust radiomic features of T2w and ADC, SVM achieved high performance to predict individualized therapeutic response of CIRT, ie, area-under-curve (AUC) = 0.88.Conclusion: Radiomic features extracted from T2w and ADC images displayed great robustness to quantify the tumor characteristics of prostate cancer and high accuracy to predict the individualized therapeutic response of CIRT. After further validation, the selected radiomic features may become potential imaging biomarkers in the management of prostate cancer through CIRT.Keywords: radiomics, MRI, carbon ion radiotherapy, prostate cancerhttps://www.dovepress.com/imaging-based-individualized-response-prediction-of-carbon-ion-radioth-peer-reviewed-article-CMARradiomicsMRIcarbon ion radiotherapyprostate cancer
collection DOAJ
language English
format Article
sources DOAJ
author Wu S
Jiao Y
Zhang Y
Ren X
Li P
Yu Q
Zhang Q
Wang Q
Fu S
spellingShingle Wu S
Jiao Y
Zhang Y
Ren X
Li P
Yu Q
Zhang Q
Wang Q
Fu S
Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients
Cancer Management and Research
radiomics
MRI
carbon ion radiotherapy
prostate cancer
author_facet Wu S
Jiao Y
Zhang Y
Ren X
Li P
Yu Q
Zhang Q
Wang Q
Fu S
author_sort Wu S
title Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients
title_short Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients
title_full Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients
title_fullStr Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients
title_full_unstemmed Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients
title_sort imaging-based individualized response prediction of carbon ion radiotherapy for prostate cancer patients
publisher Dove Medical Press
series Cancer Management and Research
issn 1179-1322
publishDate 2019-10-01
description Shuang Wu,1,2,* Yining Jiao,3,* Yafang Zhang,1,2 Xuhua Ren,3 Ping Li,2,4 Qi Yu,1,2 Qing Zhang,2,4 Qian Wang,3 Shen Fu1,2,5,6 1Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, People’s Republic of China; 2Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China; 3Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 4Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China; 5Key Laboratory of Nuclear Physics and Ion-beam Application MOE, Fudan University, Shanghai, People’s Republic of China; 6Department of Radiation Oncology, Shanghai Concord Cancer Hospital, Shanghai, People’s Republic of China*These authors contributed equally to this workCorrespondence: Shen FuDepartment of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, No. 4365 Kang Xin Road, Shanghai 201321, People’s Republic of ChinaEmail shen_fu@hotmail.comQian WangInstitute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954 Hua Shan Road, Shanghai 200030, People’s Republic of ChinaEmail wang.qian@sjtu.edu.cnPurpose: To explore the value of the pre-treatment MRI radiomic features in individualized prediction of the therapeutic response of carbon ion radiotherapy (CIRT) for prostate cancer patients.Patients and methods: Twenty-three patients with localized prostate cancer treated by CIRT were enrolled for analysis. Prostate tumors were manually delineated on T2-weighted (T2w) images and apparent diffusion coefficient (ADC) maps acquired before CIRT. Abundant radiomic features were extracted from the delineations, which were randomly deformed to account for delineation uncertainty. The robust features were selected and then compared between patient groups of different CIRT responses. Support vector machine (SVM) was subsequently applied to demonstrate the role of the radiomic features to predict individualized CIRT response in the way of artificial intelligence.Results: Radiomic features from ADC had significantly higher intra-correlation coefficient (ICC) (0.71±0.28) than T2w features (0.60±0.31) (p<0.01), indicating higher robustness of ADC features against delineation uncertainty. More features were excellently robust in ADC (58.2% of all the radiomic feature candidates, compared to 41.3% in T2w). By combining the excellently robust radiomic features of T2w and ADC, SVM achieved high performance to predict individualized therapeutic response of CIRT, ie, area-under-curve (AUC) = 0.88.Conclusion: Radiomic features extracted from T2w and ADC images displayed great robustness to quantify the tumor characteristics of prostate cancer and high accuracy to predict the individualized therapeutic response of CIRT. After further validation, the selected radiomic features may become potential imaging biomarkers in the management of prostate cancer through CIRT.Keywords: radiomics, MRI, carbon ion radiotherapy, prostate cancer
topic radiomics
MRI
carbon ion radiotherapy
prostate cancer
url https://www.dovepress.com/imaging-based-individualized-response-prediction-of-carbon-ion-radioth-peer-reviewed-article-CMAR
work_keys_str_mv AT wus imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients
AT jiaoy imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients
AT zhangy imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients
AT renx imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients
AT lip imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients
AT yuq imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients
AT zhangq imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients
AT wangq imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients
AT fus imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients
_version_ 1724957264952950784