Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients
Shuang Wu,1,2,* Yining Jiao,3,* Yafang Zhang,1,2 Xuhua Ren,3 Ping Li,2,4 Qi Yu,1,2 Qing Zhang,2,4 Qian Wang,3 Shen Fu1,2,5,6 1Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, People’s Republic of China; 2Shanghai Engineerin...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2019-10-01
|
Series: | Cancer Management and Research |
Subjects: | |
Online Access: | https://www.dovepress.com/imaging-based-individualized-response-prediction-of-carbon-ion-radioth-peer-reviewed-article-CMAR |
id |
doaj-c9bf9abd21da42378ba06c4662606a78 |
---|---|
record_format |
Article |
spelling |
doaj-c9bf9abd21da42378ba06c4662606a782020-11-25T02:01:23ZengDove Medical PressCancer Management and Research1179-13222019-10-01Volume 119121913149315Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer PatientsWu SJiao YZhang YRen XLi PYu QZhang QWang QFu SShuang Wu,1,2,* Yining Jiao,3,* Yafang Zhang,1,2 Xuhua Ren,3 Ping Li,2,4 Qi Yu,1,2 Qing Zhang,2,4 Qian Wang,3 Shen Fu1,2,5,6 1Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, People’s Republic of China; 2Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China; 3Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 4Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China; 5Key Laboratory of Nuclear Physics and Ion-beam Application MOE, Fudan University, Shanghai, People’s Republic of China; 6Department of Radiation Oncology, Shanghai Concord Cancer Hospital, Shanghai, People’s Republic of China*These authors contributed equally to this workCorrespondence: Shen FuDepartment of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, No. 4365 Kang Xin Road, Shanghai 201321, People’s Republic of ChinaEmail shen_fu@hotmail.comQian WangInstitute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954 Hua Shan Road, Shanghai 200030, People’s Republic of ChinaEmail wang.qian@sjtu.edu.cnPurpose: To explore the value of the pre-treatment MRI radiomic features in individualized prediction of the therapeutic response of carbon ion radiotherapy (CIRT) for prostate cancer patients.Patients and methods: Twenty-three patients with localized prostate cancer treated by CIRT were enrolled for analysis. Prostate tumors were manually delineated on T2-weighted (T2w) images and apparent diffusion coefficient (ADC) maps acquired before CIRT. Abundant radiomic features were extracted from the delineations, which were randomly deformed to account for delineation uncertainty. The robust features were selected and then compared between patient groups of different CIRT responses. Support vector machine (SVM) was subsequently applied to demonstrate the role of the radiomic features to predict individualized CIRT response in the way of artificial intelligence.Results: Radiomic features from ADC had significantly higher intra-correlation coefficient (ICC) (0.71±0.28) than T2w features (0.60±0.31) (p<0.01), indicating higher robustness of ADC features against delineation uncertainty. More features were excellently robust in ADC (58.2% of all the radiomic feature candidates, compared to 41.3% in T2w). By combining the excellently robust radiomic features of T2w and ADC, SVM achieved high performance to predict individualized therapeutic response of CIRT, ie, area-under-curve (AUC) = 0.88.Conclusion: Radiomic features extracted from T2w and ADC images displayed great robustness to quantify the tumor characteristics of prostate cancer and high accuracy to predict the individualized therapeutic response of CIRT. After further validation, the selected radiomic features may become potential imaging biomarkers in the management of prostate cancer through CIRT.Keywords: radiomics, MRI, carbon ion radiotherapy, prostate cancerhttps://www.dovepress.com/imaging-based-individualized-response-prediction-of-carbon-ion-radioth-peer-reviewed-article-CMARradiomicsMRIcarbon ion radiotherapyprostate cancer |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wu S Jiao Y Zhang Y Ren X Li P Yu Q Zhang Q Wang Q Fu S |
spellingShingle |
Wu S Jiao Y Zhang Y Ren X Li P Yu Q Zhang Q Wang Q Fu S Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients Cancer Management and Research radiomics MRI carbon ion radiotherapy prostate cancer |
author_facet |
Wu S Jiao Y Zhang Y Ren X Li P Yu Q Zhang Q Wang Q Fu S |
author_sort |
Wu S |
title |
Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients |
title_short |
Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients |
title_full |
Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients |
title_fullStr |
Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients |
title_full_unstemmed |
Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients |
title_sort |
imaging-based individualized response prediction of carbon ion radiotherapy for prostate cancer patients |
publisher |
Dove Medical Press |
series |
Cancer Management and Research |
issn |
1179-1322 |
publishDate |
2019-10-01 |
description |
Shuang Wu,1,2,* Yining Jiao,3,* Yafang Zhang,1,2 Xuhua Ren,3 Ping Li,2,4 Qi Yu,1,2 Qing Zhang,2,4 Qian Wang,3 Shen Fu1,2,5,6 1Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, People’s Republic of China; 2Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, People’s Republic of China; 3Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 4Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, People’s Republic of China; 5Key Laboratory of Nuclear Physics and Ion-beam Application MOE, Fudan University, Shanghai, People’s Republic of China; 6Department of Radiation Oncology, Shanghai Concord Cancer Hospital, Shanghai, People’s Republic of China*These authors contributed equally to this workCorrespondence: Shen FuDepartment of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, No. 4365 Kang Xin Road, Shanghai 201321, People’s Republic of ChinaEmail shen_fu@hotmail.comQian WangInstitute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954 Hua Shan Road, Shanghai 200030, People’s Republic of ChinaEmail wang.qian@sjtu.edu.cnPurpose: To explore the value of the pre-treatment MRI radiomic features in individualized prediction of the therapeutic response of carbon ion radiotherapy (CIRT) for prostate cancer patients.Patients and methods: Twenty-three patients with localized prostate cancer treated by CIRT were enrolled for analysis. Prostate tumors were manually delineated on T2-weighted (T2w) images and apparent diffusion coefficient (ADC) maps acquired before CIRT. Abundant radiomic features were extracted from the delineations, which were randomly deformed to account for delineation uncertainty. The robust features were selected and then compared between patient groups of different CIRT responses. Support vector machine (SVM) was subsequently applied to demonstrate the role of the radiomic features to predict individualized CIRT response in the way of artificial intelligence.Results: Radiomic features from ADC had significantly higher intra-correlation coefficient (ICC) (0.71±0.28) than T2w features (0.60±0.31) (p<0.01), indicating higher robustness of ADC features against delineation uncertainty. More features were excellently robust in ADC (58.2% of all the radiomic feature candidates, compared to 41.3% in T2w). By combining the excellently robust radiomic features of T2w and ADC, SVM achieved high performance to predict individualized therapeutic response of CIRT, ie, area-under-curve (AUC) = 0.88.Conclusion: Radiomic features extracted from T2w and ADC images displayed great robustness to quantify the tumor characteristics of prostate cancer and high accuracy to predict the individualized therapeutic response of CIRT. After further validation, the selected radiomic features may become potential imaging biomarkers in the management of prostate cancer through CIRT.Keywords: radiomics, MRI, carbon ion radiotherapy, prostate cancer |
topic |
radiomics MRI carbon ion radiotherapy prostate cancer |
url |
https://www.dovepress.com/imaging-based-individualized-response-prediction-of-carbon-ion-radioth-peer-reviewed-article-CMAR |
work_keys_str_mv |
AT wus imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients AT jiaoy imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients AT zhangy imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients AT renx imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients AT lip imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients AT yuq imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients AT zhangq imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients AT wangq imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients AT fus imagingbasedindividualizedresponsepredictionofcarbonionradiotherapyforprostatecancerpatients |
_version_ |
1724957264952950784 |