Analysis and Application on Controlling Thick Hard Roof Caving with Deep-Hole Position Presplitting Blasting

For the thick hard roof (THR) in Datong mining area, mining operations often led to large-scale hanging-roof and frequent and strong strata behavior, threatening mining safety seriously. Based on the instability mechanism, the fracture model for THR was established, including rock blocks articulatio...

Full description

Bibliographic Details
Main Authors: Baobao Chen, Changyou Liu
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2018/9763137
Description
Summary:For the thick hard roof (THR) in Datong mining area, mining operations often led to large-scale hanging-roof and frequent and strong strata behavior, threatening mining safety seriously. Based on the instability mechanism, the fracture model for THR was established, including rock blocks articulation and combined cantilever beam, and the limit initial and periodic intervals of THR were determined to be 36.0 m and 8.0 m, respectively. The study proposed the deep-hole presplitting blasting (DPB) for weakening THR for mitigating strong strata behaviors. Blasting-induced fracture characteristics were calculated, determining the charging coefficient and holes spacing. LS-DYNA was employed for establishing a DPB model to analyze crack evolution under the synergistic action of blasting stress wave and detonation gas and the attenuation characteristics for rock peak particle velocity, verifying the rationality of blasting parameters. Field measurement analysis indicated that the immediate roof induced a timely collapse to fill the goaf and the THR was effectively cut off near the presplitting line. Meanwhile, the working resistance was utilized with safety allowance. The field application showed the DPB on controlled THR caving achieved the significant effect.
ISSN:1687-8086
1687-8094