A Deep Learning Approach for Predicting Spatiotemporal Dynamics From Sparsely Observed Data
In this paper, we consider the problem of learning prediction models for spatiotemporal physical processes driven by unknown partial differential equations (PDEs). We propose a deep learning framework that learns the underlying dynamics and predicts its evolution using sparsely distributed data site...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9416427/ |