Simulate the effect of integral burnable absorber on the neutronic characteristics of a PWR assembly

This article examines the effect of an integral burnable absorber (IBA) on the neutronic characteristics of Pressurized Water Reactor (PWR) to provide possible improvements for the fuel management. MCNPX code was used to design a three dimensional model for PWR assembly. The design...

Full description

Bibliographic Details
Main Author: A. Abdelghafar Galahom
Format: Article
Language:English
Published: National Research Nuclear University (MEPhI) 2018-12-01
Series:Nuclear Energy and Technology
Online Access:https://nucet.pensoft.net/article/30379/download/pdf/
Description
Summary:This article examines the effect of an integral burnable absorber (IBA) on the neutronic characteristics of Pressurized Water Reactor (PWR) to provide possible improvements for the fuel management. MCNPX code was used to design a three dimensional model for PWR assembly. The designed model has been validated by comparing the output data with a previously published data. MCNPX code was used to analyze the radial thermal neutron flux and the radial power distribution through PWR assembly with and without IBA. Gadolinium is burnable absorber material that was used in the IBA rods. The gadolinium element suppressed the power in the regions where they were distributed. The existence of IBA rods has a large effect on the Kinf. This effect decreases gradually with burnup due to the degradation of gadolinium. The gadolinium isotopes degradation was analyzed with burnup. Different numbers of IBA rods were investigated to optimize the suitable number that can be used in the PWR assembly. The gadolinium effect on the concentration of 135Xe and 149Sm resulting from the fission process was analyzed.
ISSN:2452-3038