Summary: | We present the convolution neural networks (CNNs) to achieve the localization of near-field sources via the symmetric double-nested array (SDNA). Considering that the incoherent near-field sources can be separated in the frequency spectrum, we first calculate the phase difference matrices and consider the typical elements as the inputs of the networks. In order to guarantee the precision of the angle-of-arrival (AOA) estimation, we implement the autoencoders to divide the AOA subregions and construct the corresponding classification CNNs to obtain the AOAs of near-field sources. Then, we construct a particular range vector without the estimated AOAs and utilize the regression CNN to obtain the range parameters of near-field sources. The proposed algorithm is robust to the off-grid parameters and suitable for the scenarios with the different number of near-field sources. Moreover, the proposed method outperforms the existing method for near-field source localization.
|