19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers

<p>Light absorbing aerosols in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes the radiative properties of these systems, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variabil...

Full description

Bibliographic Details
Main Authors: M. Sigl, N. J. Abram, J. Gabrieli, T. M. Jenk, D. Osmont, M. Schwikowski
Format: Article
Language:English
Published: Copernicus Publications 2018-10-01
Series:The Cryosphere
Online Access:https://www.the-cryosphere.net/12/3311/2018/tc-12-3311-2018.pdf
id doaj-c948c8097e1d432f807dd1959934092a
record_format Article
spelling doaj-c948c8097e1d432f807dd1959934092a2020-11-24T22:07:54ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242018-10-01123311333110.5194/tc-12-3311-201819th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciersM. Sigl0M. Sigl1N. J. Abram2J. Gabrieli3T. M. Jenk4T. M. Jenk5D. Osmont6D. Osmont7D. Osmont8M. Schwikowski9M. Schwikowski10M. Schwikowski11Laboratory of Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen, SwitzerlandOeschger Centre for Climate Change Research, University of Bern, 3012 Bern, SwitzerlandResearch School of Earth Sciences and the ARC Centre of Excellence for Climate System Science, Australian National University, Canberra 2601 ACT, AustraliaInstitute for the Dynamics of the Environmental Sciences, National Research Council (IDPA-CNR), 30172 Venice, ItalyLaboratory of Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen, SwitzerlandOeschger Centre for Climate Change Research, University of Bern, 3012 Bern, SwitzerlandLaboratory of Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen, SwitzerlandOeschger Centre for Climate Change Research, University of Bern, 3012 Bern, SwitzerlandDepartment of Chemistry and Biochemistry, University of Bern, 3012 Bern, SwitzerlandLaboratory of Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen, SwitzerlandOeschger Centre for Climate Change Research, University of Bern, 3012 Bern, SwitzerlandDepartment of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland<p>Light absorbing aerosols in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes the radiative properties of these systems, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variability of aerosol concentrations and a shortage of long-term observations contribute to large uncertainties in properly assigning the climate effects of aerosols through time.</p><p>Starting around AD&thinsp;1860, many glaciers in the European Alps began to retreat from their maximum mid-19th century terminus positions, thereby visualizing the end of the Little Ice Age in Europe. Radiative forcing by increasing deposition of industrial black carbon to snow has been suggested as the main driver of the abrupt glacier retreats in the Alps. The basis for this hypothesis was model simulations using elemental carbon concentrations at low temporal resolution from two ice cores in the Alps.</p><p>Here we present sub-annually resolved concentration records of refractory black carbon (rBC; using soot photometry) as well as distinctive tracers for mineral dust, biomass burning and industrial pollution from the Colle Gnifetti ice core in the Alps from AD&thinsp;1741 to 2015. These records allow precise assessment of a potential relation between the timing of observed acceleration of glacier melt in the mid-19th century with an increase of rBC deposition on the glacier caused by the industrialization of Western Europe. Our study reveals that in AD&thinsp;1875, the time when rBC ice-core concentrations started to significantly increase, the majority of Alpine glaciers had already experienced more than 80&thinsp;% of their total 19th century length reduction, casting doubt on a leading role for soot in terminating of the Little Ice Age. Attribution of glacial retreat requires expansion of the spatial network and sampling density of high alpine ice cores to balance potential biasing effects arising from transport, deposition, and snow conservation in individual ice-core records.</p>https://www.the-cryosphere.net/12/3311/2018/tc-12-3311-2018.pdf
collection DOAJ
language English
format Article
sources DOAJ
author M. Sigl
M. Sigl
N. J. Abram
J. Gabrieli
T. M. Jenk
T. M. Jenk
D. Osmont
D. Osmont
D. Osmont
M. Schwikowski
M. Schwikowski
M. Schwikowski
spellingShingle M. Sigl
M. Sigl
N. J. Abram
J. Gabrieli
T. M. Jenk
T. M. Jenk
D. Osmont
D. Osmont
D. Osmont
M. Schwikowski
M. Schwikowski
M. Schwikowski
19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
The Cryosphere
author_facet M. Sigl
M. Sigl
N. J. Abram
J. Gabrieli
T. M. Jenk
T. M. Jenk
D. Osmont
D. Osmont
D. Osmont
M. Schwikowski
M. Schwikowski
M. Schwikowski
author_sort M. Sigl
title 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
title_short 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
title_full 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
title_fullStr 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
title_full_unstemmed 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
title_sort 19th century glacier retreat in the alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
publisher Copernicus Publications
series The Cryosphere
issn 1994-0416
1994-0424
publishDate 2018-10-01
description <p>Light absorbing aerosols in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes the radiative properties of these systems, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variability of aerosol concentrations and a shortage of long-term observations contribute to large uncertainties in properly assigning the climate effects of aerosols through time.</p><p>Starting around AD&thinsp;1860, many glaciers in the European Alps began to retreat from their maximum mid-19th century terminus positions, thereby visualizing the end of the Little Ice Age in Europe. Radiative forcing by increasing deposition of industrial black carbon to snow has been suggested as the main driver of the abrupt glacier retreats in the Alps. The basis for this hypothesis was model simulations using elemental carbon concentrations at low temporal resolution from two ice cores in the Alps.</p><p>Here we present sub-annually resolved concentration records of refractory black carbon (rBC; using soot photometry) as well as distinctive tracers for mineral dust, biomass burning and industrial pollution from the Colle Gnifetti ice core in the Alps from AD&thinsp;1741 to 2015. These records allow precise assessment of a potential relation between the timing of observed acceleration of glacier melt in the mid-19th century with an increase of rBC deposition on the glacier caused by the industrialization of Western Europe. Our study reveals that in AD&thinsp;1875, the time when rBC ice-core concentrations started to significantly increase, the majority of Alpine glaciers had already experienced more than 80&thinsp;% of their total 19th century length reduction, casting doubt on a leading role for soot in terminating of the Little Ice Age. Attribution of glacial retreat requires expansion of the spatial network and sampling density of high alpine ice cores to balance potential biasing effects arising from transport, deposition, and snow conservation in individual ice-core records.</p>
url https://www.the-cryosphere.net/12/3311/2018/tc-12-3311-2018.pdf
work_keys_str_mv AT msigl 19thcenturyglacierretreatinthealpsprecededtheemergenceofindustrialblackcarbondepositiononhighalpineglaciers
AT msigl 19thcenturyglacierretreatinthealpsprecededtheemergenceofindustrialblackcarbondepositiononhighalpineglaciers
AT njabram 19thcenturyglacierretreatinthealpsprecededtheemergenceofindustrialblackcarbondepositiononhighalpineglaciers
AT jgabrieli 19thcenturyglacierretreatinthealpsprecededtheemergenceofindustrialblackcarbondepositiononhighalpineglaciers
AT tmjenk 19thcenturyglacierretreatinthealpsprecededtheemergenceofindustrialblackcarbondepositiononhighalpineglaciers
AT tmjenk 19thcenturyglacierretreatinthealpsprecededtheemergenceofindustrialblackcarbondepositiononhighalpineglaciers
AT dosmont 19thcenturyglacierretreatinthealpsprecededtheemergenceofindustrialblackcarbondepositiononhighalpineglaciers
AT dosmont 19thcenturyglacierretreatinthealpsprecededtheemergenceofindustrialblackcarbondepositiononhighalpineglaciers
AT dosmont 19thcenturyglacierretreatinthealpsprecededtheemergenceofindustrialblackcarbondepositiononhighalpineglaciers
AT mschwikowski 19thcenturyglacierretreatinthealpsprecededtheemergenceofindustrialblackcarbondepositiononhighalpineglaciers
AT mschwikowski 19thcenturyglacierretreatinthealpsprecededtheemergenceofindustrialblackcarbondepositiononhighalpineglaciers
AT mschwikowski 19thcenturyglacierretreatinthealpsprecededtheemergenceofindustrialblackcarbondepositiononhighalpineglaciers
_version_ 1725818652854321152