Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution
High-resolution multispectral optical and incoherent scatter radar data are used to study the variability of pulsating aurora. Two events have been analysed, and the data combined with electron transport and ion chemistry modelling provide estimates of the energy and energy flux during both the O...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2017-03-01
|
Series: | Annales Geophysicae |
Online Access: | https://www.ann-geophys.net/35/493/2017/angeo-35-493-2017.pdf |
id |
doaj-c9365ef8b0e44287a9344827488a2941 |
---|---|
record_format |
Article |
spelling |
doaj-c9365ef8b0e44287a9344827488a29412020-11-24T23:00:31ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762017-03-013549350310.5194/angeo-35-493-2017Variations in energy, flux, and brightness of pulsating aurora measured at high time resolutionH. Dahlgren0H. Dahlgren1B. S. Lanchester2N. Ivchenko3D. K. Whiter4School of Electrical Engineering, Royal Institute of Technology KTH, Stockholm, SwedenSchool of Physics and Astronomy, University of Southampton, Southampton, UKSchool of Physics and Astronomy, University of Southampton, Southampton, UKSchool of Electrical Engineering, Royal Institute of Technology KTH, Stockholm, SwedenSchool of Physics and Astronomy, University of Southampton, Southampton, UKHigh-resolution multispectral optical and incoherent scatter radar data are used to study the variability of pulsating aurora. Two events have been analysed, and the data combined with electron transport and ion chemistry modelling provide estimates of the energy and energy flux during both the ON and OFF periods of the pulsations. Both the energy and energy flux are found to be reduced during each OFF period compared with the ON period, and the estimates indicate that it is the number flux of foremost higher-energy electrons that is reduced. The energies are found never to drop below a few kilo-electronvolts during the OFF periods for these events. The high-resolution optical data show the occurrence of dips in brightness below the diffuse background level immediately after the ON period has ended. Each dip lasts for about a second, with a reduction in brightness of up to 70 % before the intensity increases to a steady background level again. A different kind of variation is also detected in the OFF period emissions during the second event, where a slower decrease in the background diffuse emission is seen with its brightness minimum just before the ON period, for a series of pulsations. Since the dips in the emission level during OFF are dependent on the switching between ON and OFF, this could indicate a common mechanism for the precipitation during the ON and OFF phases. A statistical analysis of brightness rise, fall, and ON times for the pulsations is also performed. It is found that the pulsations are often asymmetric, with either a slower increase of brightness or a slower fall.https://www.ann-geophys.net/35/493/2017/angeo-35-493-2017.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
H. Dahlgren H. Dahlgren B. S. Lanchester N. Ivchenko D. K. Whiter |
spellingShingle |
H. Dahlgren H. Dahlgren B. S. Lanchester N. Ivchenko D. K. Whiter Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution Annales Geophysicae |
author_facet |
H. Dahlgren H. Dahlgren B. S. Lanchester N. Ivchenko D. K. Whiter |
author_sort |
H. Dahlgren |
title |
Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution |
title_short |
Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution |
title_full |
Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution |
title_fullStr |
Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution |
title_full_unstemmed |
Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution |
title_sort |
variations in energy, flux, and brightness of pulsating aurora measured at high time resolution |
publisher |
Copernicus Publications |
series |
Annales Geophysicae |
issn |
0992-7689 1432-0576 |
publishDate |
2017-03-01 |
description |
High-resolution multispectral optical and incoherent scatter radar data are
used to study the variability of pulsating aurora. Two events have been
analysed, and the data combined with electron transport and ion chemistry
modelling provide estimates of the energy and energy flux during both the ON
and OFF periods of the pulsations. Both the energy and energy flux are found
to be reduced during each OFF period compared with the ON period, and the
estimates indicate that it is the number flux of foremost higher-energy
electrons that is reduced. The energies are found never to drop below a few
kilo-electronvolts during the OFF periods for these events. The high-resolution
optical data show the occurrence of dips in brightness below the diffuse
background level immediately after the ON period has ended. Each dip lasts
for about a second, with a reduction in brightness of up to 70 % before
the intensity increases to a steady background level again. A different kind
of variation is also detected in the OFF period emissions during the second
event, where a slower decrease in the background diffuse emission is seen
with its brightness minimum just before the ON period, for a series of
pulsations. Since the dips in the emission level during OFF are dependent on
the switching between ON and OFF, this could indicate a common mechanism for
the precipitation during the ON and OFF phases. A statistical analysis of
brightness rise, fall, and ON times for the pulsations is also performed. It
is found that the pulsations are often asymmetric, with either a slower
increase of brightness or a slower fall. |
url |
https://www.ann-geophys.net/35/493/2017/angeo-35-493-2017.pdf |
work_keys_str_mv |
AT hdahlgren variationsinenergyfluxandbrightnessofpulsatingaurorameasuredathightimeresolution AT hdahlgren variationsinenergyfluxandbrightnessofpulsatingaurorameasuredathightimeresolution AT bslanchester variationsinenergyfluxandbrightnessofpulsatingaurorameasuredathightimeresolution AT nivchenko variationsinenergyfluxandbrightnessofpulsatingaurorameasuredathightimeresolution AT dkwhiter variationsinenergyfluxandbrightnessofpulsatingaurorameasuredathightimeresolution |
_version_ |
1725642139974500352 |