Monodispersed LiFePO4@C Core-Shell Nanoparticles Anchored on 3D Carbon Cloth for High-Rate Performance Binder-Free Lithium Ion Battery Cathode
Owing to high safety, low cost, nontoxicity, and environment-friendly features, LiFePO4 that is served as the lithium ion battery cathode has attracted much attention. In this paper, a novel 3D LiFePO4@C core-shell configuration anchored on carbon cloth is synthesized by a facile impregnation sol-ge...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Journal of Nanomaterials |
Online Access: | http://dx.doi.org/10.1155/2020/2607017 |
Summary: | Owing to high safety, low cost, nontoxicity, and environment-friendly features, LiFePO4 that is served as the lithium ion battery cathode has attracted much attention. In this paper, a novel 3D LiFePO4@C core-shell configuration anchored on carbon cloth is synthesized by a facile impregnation sol-gel approach. Through the binder-free structure, the active materials can be directly combined with the current collector to avoid the falling of active materials and achieve the high-efficiency lithium ion and electron transfer. The traditional slurry-casting technique is applicable for pasting LiFePO4@C powders onto the 2D aluminum foil current collector (LFP-Al). By contrast, LFP-CC exhibits a reversible specific capacity of 140 mAh·g-1 and 93.3 mAh·g-1 at 1C and 10C, respectively. After 500 cycles, no obvious capacity decay can be observed at 10C while keeping the coulombic efficiency above 98%. Because of its excellent capacity, high-rate performance, stable electrochemical performance, and good flexibility, this material has great potentials of developing the next-generation high-rate performance lithium ion battery and preparing the binder-free flexible cathode. |
---|---|
ISSN: | 1687-4110 1687-4129 |