PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data

Background: Visual heuristics of pathology diagnosis is a largely unexplored area where reported studies only provided a qualitative insight into the subject. Uncovering and quantifying pathology visual and nonvisual diagnostic patterns have great potential to improve clinical outcomes and avoid dia...

Full description

Bibliographic Details
Main Authors: Dmitriy Shin, Mikhail Kovalenko, Ilker Ersoy, Yu Li, Donald Doll, Chi-Ren Shyu, Richard Hammer
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2017-01-01
Series:Journal of Pathology Informatics
Subjects:
Online Access:http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2017;volume=8;issue=1;spage=29;epage=29;aulast=Shin
id doaj-c9351550daf048238940c6855ae00f54
record_format Article
spelling doaj-c9351550daf048238940c6855ae00f542020-11-25T00:54:40ZengWolters Kluwer Medknow PublicationsJournal of Pathology Informatics2153-35392153-35392017-01-0181292910.4103/jpi.jpi_29_17PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze dataDmitriy ShinMikhail KovalenkoIlker ErsoyYu LiDonald DollChi-Ren ShyuRichard HammerBackground: Visual heuristics of pathology diagnosis is a largely unexplored area where reported studies only provided a qualitative insight into the subject. Uncovering and quantifying pathology visual and nonvisual diagnostic patterns have great potential to improve clinical outcomes and avoid diagnostic pitfalls. Methods: Here, we present PathEdEx, an informatics computational framework that incorporates whole-slide digital pathology imaging with multiscale gaze-tracking technology to create web-based interactive pathology educational atlases and to datamine visual and nonvisual diagnostic heuristics. Results: We demonstrate the capabilities of PathEdEx for mining visual and nonvisual diagnostic heuristics using the first PathEdEx volume of a hematopathology atlas. We conducted a quantitative study on the time dynamics of zooming and panning operations utilized by experts and novices to come to the correct diagnosis. We then performed association rule mining to determine sets of diagnostic factors that consistently result in a correct diagnosis, and studied differences in diagnostic strategies across different levels of pathology expertise using Markov chain (MC) modeling and MC Monte Carlo simulations. To perform these studies, we translated raw gaze points to high-explanatory semantic labels that represent pathology diagnostic clues. Therefore, the outcome of these studies is readily transformed into narrative descriptors for direct use in pathology education and practice. Conclusion: PathEdEx framework can be used to capture best practices of pathology visual and nonvisual diagnostic heuristics that can be passed over to the next generation of pathologists and have potential to streamline implementation of precision diagnostics in precision medicine settings.http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2017;volume=8;issue=1;spage=29;epage=29;aulast=ShinDigital pathologyeye trackinggaze trackingpathology diagnosisvisual heuristicsvisual knowledgewhole slide images
collection DOAJ
language English
format Article
sources DOAJ
author Dmitriy Shin
Mikhail Kovalenko
Ilker Ersoy
Yu Li
Donald Doll
Chi-Ren Shyu
Richard Hammer
spellingShingle Dmitriy Shin
Mikhail Kovalenko
Ilker Ersoy
Yu Li
Donald Doll
Chi-Ren Shyu
Richard Hammer
PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data
Journal of Pathology Informatics
Digital pathology
eye tracking
gaze tracking
pathology diagnosis
visual heuristics
visual knowledge
whole slide images
author_facet Dmitriy Shin
Mikhail Kovalenko
Ilker Ersoy
Yu Li
Donald Doll
Chi-Ren Shyu
Richard Hammer
author_sort Dmitriy Shin
title PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data
title_short PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data
title_full PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data
title_fullStr PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data
title_full_unstemmed PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data
title_sort pathedex – uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data
publisher Wolters Kluwer Medknow Publications
series Journal of Pathology Informatics
issn 2153-3539
2153-3539
publishDate 2017-01-01
description Background: Visual heuristics of pathology diagnosis is a largely unexplored area where reported studies only provided a qualitative insight into the subject. Uncovering and quantifying pathology visual and nonvisual diagnostic patterns have great potential to improve clinical outcomes and avoid diagnostic pitfalls. Methods: Here, we present PathEdEx, an informatics computational framework that incorporates whole-slide digital pathology imaging with multiscale gaze-tracking technology to create web-based interactive pathology educational atlases and to datamine visual and nonvisual diagnostic heuristics. Results: We demonstrate the capabilities of PathEdEx for mining visual and nonvisual diagnostic heuristics using the first PathEdEx volume of a hematopathology atlas. We conducted a quantitative study on the time dynamics of zooming and panning operations utilized by experts and novices to come to the correct diagnosis. We then performed association rule mining to determine sets of diagnostic factors that consistently result in a correct diagnosis, and studied differences in diagnostic strategies across different levels of pathology expertise using Markov chain (MC) modeling and MC Monte Carlo simulations. To perform these studies, we translated raw gaze points to high-explanatory semantic labels that represent pathology diagnostic clues. Therefore, the outcome of these studies is readily transformed into narrative descriptors for direct use in pathology education and practice. Conclusion: PathEdEx framework can be used to capture best practices of pathology visual and nonvisual diagnostic heuristics that can be passed over to the next generation of pathologists and have potential to streamline implementation of precision diagnostics in precision medicine settings.
topic Digital pathology
eye tracking
gaze tracking
pathology diagnosis
visual heuristics
visual knowledge
whole slide images
url http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2017;volume=8;issue=1;spage=29;epage=29;aulast=Shin
work_keys_str_mv AT dmitriyshin pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata
AT mikhailkovalenko pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata
AT ilkerersoy pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata
AT yuli pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata
AT donalddoll pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata
AT chirenshyu pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata
AT richardhammer pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata
_version_ 1725233427616104448