PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data
Background: Visual heuristics of pathology diagnosis is a largely unexplored area where reported studies only provided a qualitative insight into the subject. Uncovering and quantifying pathology visual and nonvisual diagnostic patterns have great potential to improve clinical outcomes and avoid dia...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2017-01-01
|
Series: | Journal of Pathology Informatics |
Subjects: | |
Online Access: | http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2017;volume=8;issue=1;spage=29;epage=29;aulast=Shin |
id |
doaj-c9351550daf048238940c6855ae00f54 |
---|---|
record_format |
Article |
spelling |
doaj-c9351550daf048238940c6855ae00f542020-11-25T00:54:40ZengWolters Kluwer Medknow PublicationsJournal of Pathology Informatics2153-35392153-35392017-01-0181292910.4103/jpi.jpi_29_17PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze dataDmitriy ShinMikhail KovalenkoIlker ErsoyYu LiDonald DollChi-Ren ShyuRichard HammerBackground: Visual heuristics of pathology diagnosis is a largely unexplored area where reported studies only provided a qualitative insight into the subject. Uncovering and quantifying pathology visual and nonvisual diagnostic patterns have great potential to improve clinical outcomes and avoid diagnostic pitfalls. Methods: Here, we present PathEdEx, an informatics computational framework that incorporates whole-slide digital pathology imaging with multiscale gaze-tracking technology to create web-based interactive pathology educational atlases and to datamine visual and nonvisual diagnostic heuristics. Results: We demonstrate the capabilities of PathEdEx for mining visual and nonvisual diagnostic heuristics using the first PathEdEx volume of a hematopathology atlas. We conducted a quantitative study on the time dynamics of zooming and panning operations utilized by experts and novices to come to the correct diagnosis. We then performed association rule mining to determine sets of diagnostic factors that consistently result in a correct diagnosis, and studied differences in diagnostic strategies across different levels of pathology expertise using Markov chain (MC) modeling and MC Monte Carlo simulations. To perform these studies, we translated raw gaze points to high-explanatory semantic labels that represent pathology diagnostic clues. Therefore, the outcome of these studies is readily transformed into narrative descriptors for direct use in pathology education and practice. Conclusion: PathEdEx framework can be used to capture best practices of pathology visual and nonvisual diagnostic heuristics that can be passed over to the next generation of pathologists and have potential to streamline implementation of precision diagnostics in precision medicine settings.http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2017;volume=8;issue=1;spage=29;epage=29;aulast=ShinDigital pathologyeye trackinggaze trackingpathology diagnosisvisual heuristicsvisual knowledgewhole slide images |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dmitriy Shin Mikhail Kovalenko Ilker Ersoy Yu Li Donald Doll Chi-Ren Shyu Richard Hammer |
spellingShingle |
Dmitriy Shin Mikhail Kovalenko Ilker Ersoy Yu Li Donald Doll Chi-Ren Shyu Richard Hammer PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data Journal of Pathology Informatics Digital pathology eye tracking gaze tracking pathology diagnosis visual heuristics visual knowledge whole slide images |
author_facet |
Dmitriy Shin Mikhail Kovalenko Ilker Ersoy Yu Li Donald Doll Chi-Ren Shyu Richard Hammer |
author_sort |
Dmitriy Shin |
title |
PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data |
title_short |
PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data |
title_full |
PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data |
title_fullStr |
PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data |
title_full_unstemmed |
PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data |
title_sort |
pathedex – uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data |
publisher |
Wolters Kluwer Medknow Publications |
series |
Journal of Pathology Informatics |
issn |
2153-3539 2153-3539 |
publishDate |
2017-01-01 |
description |
Background: Visual heuristics of pathology diagnosis is a largely unexplored area where reported studies only provided a qualitative insight into the subject. Uncovering and quantifying pathology visual and nonvisual diagnostic patterns have great potential to improve clinical outcomes and avoid diagnostic pitfalls. Methods: Here, we present PathEdEx, an informatics computational framework that incorporates whole-slide digital pathology imaging with multiscale gaze-tracking technology to create web-based interactive pathology educational atlases and to datamine visual and nonvisual diagnostic heuristics. Results: We demonstrate the capabilities of PathEdEx for mining visual and nonvisual diagnostic heuristics using the first PathEdEx volume of a hematopathology atlas. We conducted a quantitative study on the time dynamics of zooming and panning operations utilized by experts and novices to come to the correct diagnosis. We then performed association rule mining to determine sets of diagnostic factors that consistently result in a correct diagnosis, and studied differences in diagnostic strategies across different levels of pathology expertise using Markov chain (MC) modeling and MC Monte Carlo simulations. To perform these studies, we translated raw gaze points to high-explanatory semantic labels that represent pathology diagnostic clues. Therefore, the outcome of these studies is readily transformed into narrative descriptors for direct use in pathology education and practice. Conclusion: PathEdEx framework can be used to capture best practices of pathology visual and nonvisual diagnostic heuristics that can be passed over to the next generation of pathologists and have potential to streamline implementation of precision diagnostics in precision medicine settings. |
topic |
Digital pathology eye tracking gaze tracking pathology diagnosis visual heuristics visual knowledge whole slide images |
url |
http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2017;volume=8;issue=1;spage=29;epage=29;aulast=Shin |
work_keys_str_mv |
AT dmitriyshin pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata AT mikhailkovalenko pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata AT ilkerersoy pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata AT yuli pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata AT donalddoll pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata AT chirenshyu pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata AT richardhammer pathedexuncoveringhighexplanatoryvisualdiagnosticsheuristicsusingdigitalpathologyandmultiscalegazedata |
_version_ |
1725233427616104448 |