Performance Enhancement of the Micromixer by the Multiobjective Genetic Algorithm and Surrogate Model Based on a Navier–Stokes Analysis Using Trade-Off Objective Functions

Optimal structure of the micromixer with a two-layer serpentine crossing device was accomplished by a multiobjective genetic algorithm and surrogate modeling based on a Navier–Stokes analysis using the trade-off objective functions behavior. The optimization analysis was conducted with three design...

Full description

Bibliographic Details
Main Authors: Shakhawat Hossain, Farzana Islam, Nass Toufik Tayeb, Muhammad Aslam, Jin-Hyuk Kim
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2021/9924849
Description
Summary:Optimal structure of the micromixer with a two-layer serpentine crossing device was accomplished by a multiobjective genetic algorithm and surrogate modeling based on a Navier–Stokes analysis using the trade-off objective functions behavior. The optimization analysis was conducted with three design parameters, i.e., channel width to the pitch span (w/P) ratio, major channel width to the pitch span (H/P) ratio, and channel depth to the pitch span (d/P) ratio. Two objective functions (i.e., mixing index and pressure drop) with trade-off characteristics have been used to solve the multiobjective optimization problem. The design domain was predetermined by a parametric investigation; afterward, the Latin hypercube sampling method was employed to select the appropriate design points surrounded by the design domain. The numerical data of the thirty-two design points were used to create the surrogate model; among the different surrogate models, in this study, the Kriging metamodel has been used. The concave pareto-optimal curve signifies the trade-off characteristics linking the objective functions.
ISSN:1563-5147