Ultrafast nonlinear transparency driven at a telecom wavelength in an organic semiconductor system

Ultrafast laser-induced transparency is demonstrated using femtosecond (fs) pump-probe experiments in the organic P3HT:PCBM (donor:acceptor) blend structure. For above band gap pumping, ultrafast transient signals strongly depend on the probe photon energy. Most intriguingly, for below band gap pump...

Full description

Bibliographic Details
Main Authors: Joong-Mok Park, Di Cheng, Aaron Patz, Liang Luo, Zhaoyu Liu, Fadzai Fungura, Ruth Shinar, Kai-Ming Ho, Joseph Shinar, Jigang Wang
Format: Article
Language:English
Published: AIP Publishing LLC 2019-02-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.5042542
Description
Summary:Ultrafast laser-induced transparency is demonstrated using femtosecond (fs) pump-probe experiments in the organic P3HT:PCBM (donor:acceptor) blend structure. For above band gap pumping, ultrafast transient signals strongly depend on the probe photon energy. Most intriguingly, for below band gap pumping at 0.95 eV, or 1.3 µm at a telecom wavelength, a huge transmission increase up to 30% only during the laser pulse ∼100 fs is observed as a pump-driven, quasi-instantaneous suppression of absorption for the high photon-energy energy probe beam. We attribute the observed laser-driven transparency to dynamic Franz-Keldysh effect, at least one order of magnitude stronger compared to the multiphoton nonlinearities. Our results may be used for development of low-cost, beyond 100 Gbit/s optical switching devices.
ISSN:2158-3226