An improved distance measure between the expression profiles linking co-expression and co-regulation in mouse
<p>Abstract</p> <p>Background</p> <p>Many statistical algorithms combine microarray expression data and genome sequence data to identify transcription factor binding motifs in the low eukaryotic genomes. Finding cis-regulatory elements in higher eukaryote genomes, howev...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2006-01-01
|
Series: | BMC Bioinformatics |
Online Access: | http://www.biomedcentral.com/1471-2105/7/44 |
id |
doaj-c91137d14baa45c4a0140786f7e1a892 |
---|---|
record_format |
Article |
spelling |
doaj-c91137d14baa45c4a0140786f7e1a8922020-11-24T22:15:52ZengBMCBMC Bioinformatics1471-21052006-01-01714410.1186/1471-2105-7-44An improved distance measure between the expression profiles linking co-expression and co-regulation in mouseJi HongkaiKim Ryung SWong Wing H<p>Abstract</p> <p>Background</p> <p>Many statistical algorithms combine microarray expression data and genome sequence data to identify transcription factor binding motifs in the low eukaryotic genomes. Finding cis-regulatory elements in higher eukaryote genomes, however, remains a challenge, as searching in the promoter regions of genes with similar expression patterns often fails. The difficulty is partially attributable to the poor performance of the similarity measures for comparing expression profiles. The widely accepted measures are inadequate for distinguishing genes transcribed from distinct regulatory mechanisms in the complicated genomes of higher eukaryotes.</p> <p>Results</p> <p>By defining the regulatory similarity between a gene pair as the number of common known transcription factor binding motifs in the promoter regions, we compared the performance of several expression distance measures on seven mouse expression data sets. We propose a new distance measure that accounts for both the linear trends and fold-changes of expression across the samples.</p> <p>Conclusion</p> <p>The study reveals that the proposed distance measure for comparing expression profiles enables us to identify genes with large number of common regulatory elements because it reflects the inherent regulatory information better than widely accepted distance measures such as the Pearson's correlation or cosine correlation with or without log transformation.</p> http://www.biomedcentral.com/1471-2105/7/44 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ji Hongkai Kim Ryung S Wong Wing H |
spellingShingle |
Ji Hongkai Kim Ryung S Wong Wing H An improved distance measure between the expression profiles linking co-expression and co-regulation in mouse BMC Bioinformatics |
author_facet |
Ji Hongkai Kim Ryung S Wong Wing H |
author_sort |
Ji Hongkai |
title |
An improved distance measure between the expression profiles linking co-expression and co-regulation in mouse |
title_short |
An improved distance measure between the expression profiles linking co-expression and co-regulation in mouse |
title_full |
An improved distance measure between the expression profiles linking co-expression and co-regulation in mouse |
title_fullStr |
An improved distance measure between the expression profiles linking co-expression and co-regulation in mouse |
title_full_unstemmed |
An improved distance measure between the expression profiles linking co-expression and co-regulation in mouse |
title_sort |
improved distance measure between the expression profiles linking co-expression and co-regulation in mouse |
publisher |
BMC |
series |
BMC Bioinformatics |
issn |
1471-2105 |
publishDate |
2006-01-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Many statistical algorithms combine microarray expression data and genome sequence data to identify transcription factor binding motifs in the low eukaryotic genomes. Finding cis-regulatory elements in higher eukaryote genomes, however, remains a challenge, as searching in the promoter regions of genes with similar expression patterns often fails. The difficulty is partially attributable to the poor performance of the similarity measures for comparing expression profiles. The widely accepted measures are inadequate for distinguishing genes transcribed from distinct regulatory mechanisms in the complicated genomes of higher eukaryotes.</p> <p>Results</p> <p>By defining the regulatory similarity between a gene pair as the number of common known transcription factor binding motifs in the promoter regions, we compared the performance of several expression distance measures on seven mouse expression data sets. We propose a new distance measure that accounts for both the linear trends and fold-changes of expression across the samples.</p> <p>Conclusion</p> <p>The study reveals that the proposed distance measure for comparing expression profiles enables us to identify genes with large number of common regulatory elements because it reflects the inherent regulatory information better than widely accepted distance measures such as the Pearson's correlation or cosine correlation with or without log transformation.</p> |
url |
http://www.biomedcentral.com/1471-2105/7/44 |
work_keys_str_mv |
AT jihongkai animproveddistancemeasurebetweentheexpressionprofileslinkingcoexpressionandcoregulationinmouse AT kimryungs animproveddistancemeasurebetweentheexpressionprofileslinkingcoexpressionandcoregulationinmouse AT wongwingh animproveddistancemeasurebetweentheexpressionprofileslinkingcoexpressionandcoregulationinmouse AT jihongkai improveddistancemeasurebetweentheexpressionprofileslinkingcoexpressionandcoregulationinmouse AT kimryungs improveddistancemeasurebetweentheexpressionprofileslinkingcoexpressionandcoregulationinmouse AT wongwingh improveddistancemeasurebetweentheexpressionprofileslinkingcoexpressionandcoregulationinmouse |
_version_ |
1725792643515940864 |