Production of low cost paper from Pandanus utilis fibres as a substitution to wood

Abstract Indigenous plants are widely abundant in Mauritius and if made proper use of, these renewable plants can contribute largely to the local economic sector. This paper assesses the suitability of producing eco-friendly and biodegradable papers using low-cost raw materials by means of fibre fro...

Full description

Bibliographic Details
Main Authors: Nausheen Jaffur, Pratima Jeetah
Format: Article
Language:English
Published: BMC 2019-07-01
Series:Sustainable Environment Research
Subjects:
Online Access:http://link.springer.com/article/10.1186/s42834-019-0023-6
Description
Summary:Abstract Indigenous plants are widely abundant in Mauritius and if made proper use of, these renewable plants can contribute largely to the local economic sector. This paper assesses the suitability of producing eco-friendly and biodegradable papers using low-cost raw materials by means of fibre from Pandanus utilis’ leaves commonly known as ‘Vacoas’. The leaves were used along with Arundo donax or wastepaper to manufacture composite paper samples in the ratios of 20:80, 40:60, 60:40, 80:20 and 100:0. Chemical pulping was done through Kraft process for a period of 1.5 h at a concentration of 14 wt% NaOH and 4 wt% Na2S at 90 ± 2.5 °C. The mean thickness of the papers was determined to be 0.261 ± 0.027 mm. It was found that the 100% Vacoas fibres had the highest absorbency rate of 1.8 ± 0.5 s followed by the composite A. donax and Vacoas fibre (1.8 ± 0.3 s). The most abrasion resistant paper which also demonstrated the highest burst index of 0.63 kPa m2 g− 1 and tensile index 11.8 N m g− 1 was observed to be that of 100:0 Vacoas fibre paper requiring 35 turns to get abraded followed by the P. utilis and A. donax mix where the 80:20 fibre ratio revealed a high bursting index of 0.45 kPa m2 g− 1 requiring 25 turns to get abraded while 40% P. utilis and 60% A. donax had a high tensile strength of 11.9 N m g− 1. Vacoas to wastepaper mix ratios of 20:80 and 40:60 were found to have the highest mean recovery angles of 61.3 and 59.6°, respectively.
ISSN:2468-2039