Periodic solutions of relativistic Liénard-type equations
In this paper, we prove that the relativistic Liénard-type equation \begin{equation*} \begin{split} \frac{d}{dt}\left(\frac{\dot{x}\left\vert \dot{x} \right\vert ^{p-2}}{\big( 1-\left\vert \dot{x}\right\vert ^{p}\big) ^{\frac{p-1}{p}}}\right) +f\left( x\right) \dot{x} +g\left( x\right) =0 \text{,}\q...
Main Author: | Mustafa Aktas |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2020-06-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8047 |
Similar Items
-
Existence of limit cycles for some generalisation of the Liénard equations: the relativistic and the prescribed curvature cases.
by: Timoteo Carletti, et al.
Published: (2020-01-01) -
Existence of periodic solution for perturbed generalized Lienard equations
by: Islam Boussaada, et al.
Published: (2006-11-01) -
Periodic solutions for a Lienard equation with two deviating arguments
by: Junkang Tian, et al.
Published: (2009-10-01) -
Positive periodic solutions for Lienard type p-Laplacian equations
by: Junxia Meng
Published: (2009-03-01) -
A new result on the existence of periodic solutions for Liénard equations with a singularity of repulsive type
by: Shiping Lu
Published: (2017-02-01)