Summary: | Sensory cortical circuits are shaped by experience during sensitive periods in development. In the primary visual cortex (V1) altered visual experience results in changes in visual responsiveness of cortical neurons. The experience-dependent refinement of the circuit in V1 is thought to rely on competitive interactions between feedforward circuits driven by the two eyes. However, recent data have provided evidence for an additional role of cortico-cortical circuits in this process. Indeed, experience-dependent changes in intracortical circuits can be induced rapidly and may result in rapid-onset functional changes. Unilateral occlusion of vision rapidly alters visual responsiveness, synaptic strength and connectivity of local circuits in the binocular region of V1 (V1b), where the inputs from the two eyes converge. In the monocular region of rodent V1 (V1m), where feedforward inputs from the ipsilateral eye are virtually absent, visual deprivation induces rapid plasticity in local circuits; however, functional changes seem to occur only after long periods of deprivation. In V1m there is currently no evidence for functional changes occurring within a time window compatible with that of local circuit plasticity. Here, we probed the visual responsiveness of neurons in rat V1m and assessed the effect of one day unilateral eye lid suture on single neuron visual responses. We report a novel form of plasticity within V1m that occurs on a timescale consistent with the earliest known changes in synaptic strength. Our data provide new insights into how sensory experience can rapidly modulate neuronal responses, even in the absence of direct competition between feedforward thalamocortical inputs.
|