Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light
Real-time quantum feedback control can be used to cool quantum systems to their motional ground states, but this has been so far achieved via classical probe fields. Here the authors report feedback cooling of a mechanical oscillator using a squeezed field, reporting higher cooling rate over classic...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2016-11-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/ncomms13628 |
Summary: | Real-time quantum feedback control can be used to cool quantum systems to their motional ground states, but this has been so far achieved via classical probe fields. Here the authors report feedback cooling of a mechanical oscillator using a squeezed field, reporting higher cooling rate over classical light. |
---|---|
ISSN: | 2041-1723 |