Microstructure, oxidation behaviour and thermal shock resistance of self-passivating W-Cr-Y-Zr alloys

Self-passivating tungsten based alloys for the first wall armor of future fusion reactors are expected to provide an important safety advantage compare to pure tungsten in case of a loss-of-coolant accident with simultaneous air ingress, due to the formation of a stable protective scale at high temp...

Full description

Bibliographic Details
Main Authors: Elisa Sal, Carmen García-Rosales, Karsten Schlueter, Katja Hunger, Mauricio Gago, Marius Wirtz, Aida Calvo, Iñigo Andueza, Rudolf Neu, Gerald Pintsuk
Format: Article
Language:English
Published: Elsevier 2020-08-01
Series:Nuclear Materials and Energy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352179120300466
id doaj-c8df3e8902ef47d891cedd2bbb1cdc74
record_format Article
spelling doaj-c8df3e8902ef47d891cedd2bbb1cdc742020-11-25T02:36:02ZengElsevierNuclear Materials and Energy2352-17912020-08-0124100770Microstructure, oxidation behaviour and thermal shock resistance of self-passivating W-Cr-Y-Zr alloysElisa Sal0Carmen García-Rosales1Karsten Schlueter2Katja Hunger3Mauricio Gago4Marius Wirtz5Aida Calvo6Iñigo Andueza7Rudolf Neu8Gerald Pintsuk9Ceit Technology Center, 20018 San Sebastian, Spain; Universidad de Navarra, Tecnun, 20018 San Sebastian, SpainCeit Technology Center, 20018 San Sebastian, Spain; Universidad de Navarra, Tecnun, 20018 San Sebastian, Spain; Corresponding author at: Ceit-IK4 Technology Center, 20018 San Sebastian, Spain.Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany; Technische Universität München, 85748 Garching, GermanyMax-Planck-Institut für Plasmaphysik, 85748 Garching, GermanyForchungszentrum Jülich GmbH, Institute of Energy and Climate Research, 52425 Jülich, GermanyForchungszentrum Jülich GmbH, Institute of Energy and Climate Research, 52425 Jülich, GermanyCeit Technology Center, 20018 San Sebastian, Spain; Universidad de Navarra, Tecnun, 20018 San Sebastian, SpainCeit Technology Center, 20018 San Sebastian, SpainMax-Planck-Institut für Plasmaphysik, 85748 Garching, Germany; Technische Universität München, 85748 Garching, GermanyForchungszentrum Jülich GmbH, Institute of Energy and Climate Research, 52425 Jülich, GermanySelf-passivating tungsten based alloys for the first wall armor of future fusion reactors are expected to provide an important safety advantage compare to pure tungsten in case of a loss-of-coolant accident with simultaneous air ingress, due to the formation of a stable protective scale at high temperatures in presence of oxygen preventing the formation of volatile and radioactive WO3. In this work, Zr is added to self-passivating W-10Cr-0.5Y alloy, manufactured by mechanical alloying and HIP, in view of improving its mechanical strength and thus, its thermal shock resistance. The as-HIPed W-10Cr-0.5Y-0.5Zr exhibits a nanocrystalline microstructure with the presence of an extremely fine nanoparticle dispersion. After heat treatment at 1555 °C for 1.5 h, the grain size growths from less than 100 nm to 620 nm and nanoparticles are present both at the grain boundaries and inside the grains. Oxidation tests at 1000 °C revealed that the alloy with Zr exhibits also a strong oxidation reduction compared to pure W. The long-term oxidation rate is similar to that of the alloy without Zr. Under thermal shock loading simulating 1000 ELM-like pulses at the divertor, the heat treated Zr-containing alloy did not present any damage.http://www.sciencedirect.com/science/article/pii/S2352179120300466Self-passivating tungsten alloyOxidation resistanceThermal shock resistancePlasma-facing materials
collection DOAJ
language English
format Article
sources DOAJ
author Elisa Sal
Carmen García-Rosales
Karsten Schlueter
Katja Hunger
Mauricio Gago
Marius Wirtz
Aida Calvo
Iñigo Andueza
Rudolf Neu
Gerald Pintsuk
spellingShingle Elisa Sal
Carmen García-Rosales
Karsten Schlueter
Katja Hunger
Mauricio Gago
Marius Wirtz
Aida Calvo
Iñigo Andueza
Rudolf Neu
Gerald Pintsuk
Microstructure, oxidation behaviour and thermal shock resistance of self-passivating W-Cr-Y-Zr alloys
Nuclear Materials and Energy
Self-passivating tungsten alloy
Oxidation resistance
Thermal shock resistance
Plasma-facing materials
author_facet Elisa Sal
Carmen García-Rosales
Karsten Schlueter
Katja Hunger
Mauricio Gago
Marius Wirtz
Aida Calvo
Iñigo Andueza
Rudolf Neu
Gerald Pintsuk
author_sort Elisa Sal
title Microstructure, oxidation behaviour and thermal shock resistance of self-passivating W-Cr-Y-Zr alloys
title_short Microstructure, oxidation behaviour and thermal shock resistance of self-passivating W-Cr-Y-Zr alloys
title_full Microstructure, oxidation behaviour and thermal shock resistance of self-passivating W-Cr-Y-Zr alloys
title_fullStr Microstructure, oxidation behaviour and thermal shock resistance of self-passivating W-Cr-Y-Zr alloys
title_full_unstemmed Microstructure, oxidation behaviour and thermal shock resistance of self-passivating W-Cr-Y-Zr alloys
title_sort microstructure, oxidation behaviour and thermal shock resistance of self-passivating w-cr-y-zr alloys
publisher Elsevier
series Nuclear Materials and Energy
issn 2352-1791
publishDate 2020-08-01
description Self-passivating tungsten based alloys for the first wall armor of future fusion reactors are expected to provide an important safety advantage compare to pure tungsten in case of a loss-of-coolant accident with simultaneous air ingress, due to the formation of a stable protective scale at high temperatures in presence of oxygen preventing the formation of volatile and radioactive WO3. In this work, Zr is added to self-passivating W-10Cr-0.5Y alloy, manufactured by mechanical alloying and HIP, in view of improving its mechanical strength and thus, its thermal shock resistance. The as-HIPed W-10Cr-0.5Y-0.5Zr exhibits a nanocrystalline microstructure with the presence of an extremely fine nanoparticle dispersion. After heat treatment at 1555 °C for 1.5 h, the grain size growths from less than 100 nm to 620 nm and nanoparticles are present both at the grain boundaries and inside the grains. Oxidation tests at 1000 °C revealed that the alloy with Zr exhibits also a strong oxidation reduction compared to pure W. The long-term oxidation rate is similar to that of the alloy without Zr. Under thermal shock loading simulating 1000 ELM-like pulses at the divertor, the heat treated Zr-containing alloy did not present any damage.
topic Self-passivating tungsten alloy
Oxidation resistance
Thermal shock resistance
Plasma-facing materials
url http://www.sciencedirect.com/science/article/pii/S2352179120300466
work_keys_str_mv AT elisasal microstructureoxidationbehaviourandthermalshockresistanceofselfpassivatingwcryzralloys
AT carmengarciarosales microstructureoxidationbehaviourandthermalshockresistanceofselfpassivatingwcryzralloys
AT karstenschlueter microstructureoxidationbehaviourandthermalshockresistanceofselfpassivatingwcryzralloys
AT katjahunger microstructureoxidationbehaviourandthermalshockresistanceofselfpassivatingwcryzralloys
AT mauriciogago microstructureoxidationbehaviourandthermalshockresistanceofselfpassivatingwcryzralloys
AT mariuswirtz microstructureoxidationbehaviourandthermalshockresistanceofselfpassivatingwcryzralloys
AT aidacalvo microstructureoxidationbehaviourandthermalshockresistanceofselfpassivatingwcryzralloys
AT inigoandueza microstructureoxidationbehaviourandthermalshockresistanceofselfpassivatingwcryzralloys
AT rudolfneu microstructureoxidationbehaviourandthermalshockresistanceofselfpassivatingwcryzralloys
AT geraldpintsuk microstructureoxidationbehaviourandthermalshockresistanceofselfpassivatingwcryzralloys
_version_ 1724801790263689216