The Influence of Copper Substrates on Irradiation Effects of Graphene: A Molecular Dynamics Study

In this paper, classical molecular dynamics simulations are conducted to study the graphene grown on copper substrates under ion beam irradiation, in which the emphasis is put on the influence copper substrate on a single graphene layer. It can be inferred that the actual transmission and distributi...

Full description

Bibliographic Details
Main Authors: Shulong Wang, Qian Zhang, Kai Yin, Bo Gao, Siyu Zhang, Guoping Wang, Hongxia Liu
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/12/2/319
Description
Summary:In this paper, classical molecular dynamics simulations are conducted to study the graphene grown on copper substrates under ion beam irradiation, in which the emphasis is put on the influence copper substrate on a single graphene layer. It can be inferred that the actual transmission and distribution of kinetic energy from incident ion play important roles in irradiation-defects forming process together. The minimum value needed to generate defects in supported graphene is higher than 2.67 keV, which is almost twice the damage threshold as the suspended graphene sheet. This work indicates the presence of copper substrate increases the damage threshold of graphene. Additionally, our results provide an atomistic explanation for the graphene with copper substrate under ion irradiation, which is very important for engineering graphene.
ISSN:1996-1944