Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)

<p>Baddeleyite is a powerful chronometer of mafic magmatic and meteorite impact processes. Precise and accurate U–Pb ages can be determined from single grains by isotope dilution thermal ionization mass spectrometry (ID-TIMS), but this requires disaggregation of the host rock for grain isolati...

Full description

Bibliographic Details
Main Authors: L. F. White, K. T. Tait, S. L. Kamo, D. E. Moser, J. R. Darling
Format: Article
Language:English
Published: Copernicus Publications 2020-07-01
Series:Geochronology
Online Access:https://gchron.copernicus.org/articles/2/177/2020/gchron-2-177-2020.pdf
id doaj-c892e5e011444ec0854e90bbf4a15223
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author L. F. White
L. F. White
K. T. Tait
K. T. Tait
S. L. Kamo
S. L. Kamo
D. E. Moser
J. R. Darling
spellingShingle L. F. White
L. F. White
K. T. Tait
K. T. Tait
S. L. Kamo
S. L. Kamo
D. E. Moser
J. R. Darling
Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)
Geochronology
author_facet L. F. White
L. F. White
K. T. Tait
K. T. Tait
S. L. Kamo
S. L. Kamo
D. E. Moser
J. R. Darling
author_sort L. F. White
title Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)
title_short Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)
title_full Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)
title_fullStr Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)
title_full_unstemmed Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)
title_sort highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and u–pb thermal ionization mass spectrometry (fib-tims)
publisher Copernicus Publications
series Geochronology
issn 2628-3719
publishDate 2020-07-01
description <p>Baddeleyite is a powerful chronometer of mafic magmatic and meteorite impact processes. Precise and accurate U–Pb ages can be determined from single grains by isotope dilution thermal ionization mass spectrometry (ID-TIMS), but this requires disaggregation of the host rock for grain isolation and dissolution. As a result, the technique is rarely applied to precious samples with limited availability (such as lunar, Martian, and asteroidal meteorites and returned samples) or samples containing small baddeleyite grains that cannot readily be isolated by conventional mineral separation techniques. Here, we use focused ion beam (FIB) techniques, utilizing both <span class="inline-formula">Xe<sup>+</sup></span> plasma and <span class="inline-formula">Ga<sup>+</sup></span> ion sources, to liberate baddeleyite subdomains directly, allowing their extraction for ID-TIMS dating. We have analysed the U–Pb isotope systematics of domains ranging between 200 and 10&thinsp;<span class="inline-formula">µm</span> in length and from 5 to <span class="inline-formula">≤0.1</span>&thinsp;<span class="inline-formula">µg</span> in mass. In total, six domains of Phalaborwa baddeleyite extracted using a <span class="inline-formula">Xe<sup>+</sup></span> plasma FIB (pFIB) yield a weighted mean <span class="inline-formula"><sup>207</sup>Pb∕<sup>206</sup>Pb</span> age of <span class="inline-formula">2060.1±2.5</span>&thinsp;Ma (0.12&thinsp;%; all uncertainties <span class="inline-formula">2<i>σ</i></span>), within uncertainty of reference values. The smallest extracted domain (ca. <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">10</mn><mo>×</mo><mn mathvariant="normal">15</mn><mo>×</mo><mn mathvariant="normal">10</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="84f4b31fb299567abff6b1714c00e33a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gchron-2-177-2020-ie00001.svg" width="61pt" height="10pt" src="gchron-2-177-2020-ie00001.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula">µm</span>) yields an internal <span class="inline-formula"><sup>207</sup>Pb∕<sup>206</sup>Pb</span> age uncertainty of <span class="inline-formula">±0.37</span>&thinsp;%. Comparable control on cutting is achieved using a <span class="inline-formula">Ga<sup>+</sup></span>-source FIB instrument, though the slower speed of cutting limits potential application to larger grains. While the U–Pb data are between 0.5&thinsp;% and 13.6&thinsp;% discordant, the extent of discordance does not correlate with the ratio of material to ion-milled surface area, and results generate an accurate upper-intercept age in U–Pb concordia space of <span class="inline-formula">2060.20±0.91</span>&thinsp;Ma (0.044&thinsp;%). Thus, we confirm the natural U–Pb variation and discordance within the Phalaborwa baddeleyite population observed with other geochronological techniques. Our results demonstrate the FIB-TIMS technique to be a powerful tool for highly accurate in situ <span class="inline-formula"><sup>207</sup>Pb∕<sup>206</sup>Pb</span> (and potentially U–Pb in concordant materials) age analysis, allowing dating of a wide variety of targets and processes newly accessible to geochronology.</p>
url https://gchron.copernicus.org/articles/2/177/2020/gchron-2-177-2020.pdf
work_keys_str_mv AT lfwhite highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims
AT lfwhite highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims
AT kttait highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims
AT kttait highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims
AT slkamo highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims
AT slkamo highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims
AT demoser highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims
AT jrdarling highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims
_version_ 1724719203373547520
spelling doaj-c892e5e011444ec0854e90bbf4a152232020-11-25T02:54:53ZengCopernicus PublicationsGeochronology2628-37192020-07-01217718610.5194/gchron-2-177-2020Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)L. F. White0L. F. White1K. T. Tait2K. T. Tait3S. L. Kamo4S. L. Kamo5D. E. Moser6J. R. Darling7Department of Natural History, Royal Ontario Museum, Toronto, Ontario, M5S 2C6, CanadaDepartment of Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B1, CanadaDepartment of Natural History, Royal Ontario Museum, Toronto, Ontario, M5S 2C6, CanadaDepartment of Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B1, CanadaDepartment of Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B1, CanadaJack Satterly Geochronology Laboratory, University of Toronto, Toronto, Ontario, M5S 3B1, CanadaDepartment of Earth Sciences, University of Western Ontario, London, Ontario, CanadaSchool of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, PO1 3QL, UK <p>Baddeleyite is a powerful chronometer of mafic magmatic and meteorite impact processes. Precise and accurate U–Pb ages can be determined from single grains by isotope dilution thermal ionization mass spectrometry (ID-TIMS), but this requires disaggregation of the host rock for grain isolation and dissolution. As a result, the technique is rarely applied to precious samples with limited availability (such as lunar, Martian, and asteroidal meteorites and returned samples) or samples containing small baddeleyite grains that cannot readily be isolated by conventional mineral separation techniques. Here, we use focused ion beam (FIB) techniques, utilizing both <span class="inline-formula">Xe<sup>+</sup></span> plasma and <span class="inline-formula">Ga<sup>+</sup></span> ion sources, to liberate baddeleyite subdomains directly, allowing their extraction for ID-TIMS dating. We have analysed the U–Pb isotope systematics of domains ranging between 200 and 10&thinsp;<span class="inline-formula">µm</span> in length and from 5 to <span class="inline-formula">≤0.1</span>&thinsp;<span class="inline-formula">µg</span> in mass. In total, six domains of Phalaborwa baddeleyite extracted using a <span class="inline-formula">Xe<sup>+</sup></span> plasma FIB (pFIB) yield a weighted mean <span class="inline-formula"><sup>207</sup>Pb∕<sup>206</sup>Pb</span> age of <span class="inline-formula">2060.1±2.5</span>&thinsp;Ma (0.12&thinsp;%; all uncertainties <span class="inline-formula">2<i>σ</i></span>), within uncertainty of reference values. The smallest extracted domain (ca. <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">10</mn><mo>×</mo><mn mathvariant="normal">15</mn><mo>×</mo><mn mathvariant="normal">10</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="84f4b31fb299567abff6b1714c00e33a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gchron-2-177-2020-ie00001.svg" width="61pt" height="10pt" src="gchron-2-177-2020-ie00001.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula">µm</span>) yields an internal <span class="inline-formula"><sup>207</sup>Pb∕<sup>206</sup>Pb</span> age uncertainty of <span class="inline-formula">±0.37</span>&thinsp;%. Comparable control on cutting is achieved using a <span class="inline-formula">Ga<sup>+</sup></span>-source FIB instrument, though the slower speed of cutting limits potential application to larger grains. While the U–Pb data are between 0.5&thinsp;% and 13.6&thinsp;% discordant, the extent of discordance does not correlate with the ratio of material to ion-milled surface area, and results generate an accurate upper-intercept age in U–Pb concordia space of <span class="inline-formula">2060.20±0.91</span>&thinsp;Ma (0.044&thinsp;%). Thus, we confirm the natural U–Pb variation and discordance within the Phalaborwa baddeleyite population observed with other geochronological techniques. Our results demonstrate the FIB-TIMS technique to be a powerful tool for highly accurate in situ <span class="inline-formula"><sup>207</sup>Pb∕<sup>206</sup>Pb</span> (and potentially U–Pb in concordant materials) age analysis, allowing dating of a wide variety of targets and processes newly accessible to geochronology.</p>https://gchron.copernicus.org/articles/2/177/2020/gchron-2-177-2020.pdf