Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)
<p>Baddeleyite is a powerful chronometer of mafic magmatic and meteorite impact processes. Precise and accurate U–Pb ages can be determined from single grains by isotope dilution thermal ionization mass spectrometry (ID-TIMS), but this requires disaggregation of the host rock for grain isolati...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-07-01
|
Series: | Geochronology |
Online Access: | https://gchron.copernicus.org/articles/2/177/2020/gchron-2-177-2020.pdf |
id |
doaj-c892e5e011444ec0854e90bbf4a15223 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
L. F. White L. F. White K. T. Tait K. T. Tait S. L. Kamo S. L. Kamo D. E. Moser J. R. Darling |
spellingShingle |
L. F. White L. F. White K. T. Tait K. T. Tait S. L. Kamo S. L. Kamo D. E. Moser J. R. Darling Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS) Geochronology |
author_facet |
L. F. White L. F. White K. T. Tait K. T. Tait S. L. Kamo S. L. Kamo D. E. Moser J. R. Darling |
author_sort |
L. F. White |
title |
Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS) |
title_short |
Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS) |
title_full |
Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS) |
title_fullStr |
Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS) |
title_full_unstemmed |
Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS) |
title_sort |
highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and u–pb thermal ionization mass spectrometry (fib-tims) |
publisher |
Copernicus Publications |
series |
Geochronology |
issn |
2628-3719 |
publishDate |
2020-07-01 |
description |
<p>Baddeleyite is a powerful chronometer of mafic magmatic and
meteorite impact processes. Precise and accurate U–Pb ages can be determined
from single grains by isotope dilution thermal ionization mass spectrometry
(ID-TIMS), but this requires disaggregation of the host rock for grain
isolation and dissolution. As a result, the technique is rarely applied to
precious samples with limited availability (such as lunar, Martian, and
asteroidal meteorites and returned samples) or samples containing small
baddeleyite grains that cannot readily be isolated by conventional mineral
separation techniques. Here, we use focused ion beam (FIB) techniques,
utilizing both <span class="inline-formula">Xe<sup>+</sup></span> plasma and
<span class="inline-formula">Ga<sup>+</sup></span> ion sources, to liberate baddeleyite subdomains
directly, allowing their extraction for ID-TIMS
dating. We have analysed the U–Pb isotope systematics of domains ranging
between 200 and 10 <span class="inline-formula">µm</span> in length and from 5 to <span class="inline-formula">≤0.1</span> <span class="inline-formula">µg</span> in mass. In total, six
domains of Phalaborwa baddeleyite extracted using a
<span class="inline-formula">Xe<sup>+</sup></span> plasma FIB (pFIB) yield a weighted mean
<span class="inline-formula"><sup>207</sup>Pb∕<sup>206</sup>Pb</span> age of <span class="inline-formula">2060.1±2.5</span> Ma (0.12 %; all uncertainties <span class="inline-formula">2<i>σ</i></span>),
within uncertainty of reference values. The smallest extracted domain (ca.
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">10</mn><mo>×</mo><mn mathvariant="normal">15</mn><mo>×</mo><mn mathvariant="normal">10</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="84f4b31fb299567abff6b1714c00e33a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gchron-2-177-2020-ie00001.svg" width="61pt" height="10pt" src="gchron-2-177-2020-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">µm</span>) yields an internal
<span class="inline-formula"><sup>207</sup>Pb∕<sup>206</sup>Pb</span> age uncertainty of
<span class="inline-formula">±0.37</span> %. Comparable control on cutting is achieved using
a <span class="inline-formula">Ga<sup>+</sup></span>-source FIB instrument, though the slower speed
of cutting limits potential application to larger grains. While the U–Pb
data are between 0.5 % and 13.6 % discordant, the extent of discordance
does not correlate with the ratio of material to ion-milled surface area, and
results generate an accurate upper-intercept age in U–Pb concordia space of
<span class="inline-formula">2060.20±0.91</span> Ma (0.044 %). Thus, we confirm the natural U–Pb
variation and discordance within the Phalaborwa baddeleyite population
observed with other geochronological techniques. Our results demonstrate the
FIB-TIMS technique to be a powerful tool for highly accurate
in situ <span class="inline-formula"><sup>207</sup>Pb∕<sup>206</sup>Pb</span> (and potentially
U–Pb in concordant materials) age analysis, allowing dating of a wide
variety of targets and processes newly accessible to geochronology.</p> |
url |
https://gchron.copernicus.org/articles/2/177/2020/gchron-2-177-2020.pdf |
work_keys_str_mv |
AT lfwhite highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims AT lfwhite highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims AT kttait highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims AT kttait highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims AT slkamo highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims AT slkamo highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims AT demoser highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims AT jrdarling highlyaccuratedatingofmicrometrescalebaddeleyitedomainsthroughcombinedfocusedionbeamextractionandupbthermalionizationmassspectrometryfibtims |
_version_ |
1724719203373547520 |
spelling |
doaj-c892e5e011444ec0854e90bbf4a152232020-11-25T02:54:53ZengCopernicus PublicationsGeochronology2628-37192020-07-01217718610.5194/gchron-2-177-2020Highly accurate dating of micrometre-scale baddeleyite domains through combined focused ion beam extraction and U–Pb thermal ionization mass spectrometry (FIB-TIMS)L. F. White0L. F. White1K. T. Tait2K. T. Tait3S. L. Kamo4S. L. Kamo5D. E. Moser6J. R. Darling7Department of Natural History, Royal Ontario Museum, Toronto, Ontario, M5S 2C6, CanadaDepartment of Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B1, CanadaDepartment of Natural History, Royal Ontario Museum, Toronto, Ontario, M5S 2C6, CanadaDepartment of Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B1, CanadaDepartment of Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B1, CanadaJack Satterly Geochronology Laboratory, University of Toronto, Toronto, Ontario, M5S 3B1, CanadaDepartment of Earth Sciences, University of Western Ontario, London, Ontario, CanadaSchool of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, PO1 3QL, UK <p>Baddeleyite is a powerful chronometer of mafic magmatic and meteorite impact processes. Precise and accurate U–Pb ages can be determined from single grains by isotope dilution thermal ionization mass spectrometry (ID-TIMS), but this requires disaggregation of the host rock for grain isolation and dissolution. As a result, the technique is rarely applied to precious samples with limited availability (such as lunar, Martian, and asteroidal meteorites and returned samples) or samples containing small baddeleyite grains that cannot readily be isolated by conventional mineral separation techniques. Here, we use focused ion beam (FIB) techniques, utilizing both <span class="inline-formula">Xe<sup>+</sup></span> plasma and <span class="inline-formula">Ga<sup>+</sup></span> ion sources, to liberate baddeleyite subdomains directly, allowing their extraction for ID-TIMS dating. We have analysed the U–Pb isotope systematics of domains ranging between 200 and 10 <span class="inline-formula">µm</span> in length and from 5 to <span class="inline-formula">≤0.1</span> <span class="inline-formula">µg</span> in mass. In total, six domains of Phalaborwa baddeleyite extracted using a <span class="inline-formula">Xe<sup>+</sup></span> plasma FIB (pFIB) yield a weighted mean <span class="inline-formula"><sup>207</sup>Pb∕<sup>206</sup>Pb</span> age of <span class="inline-formula">2060.1±2.5</span> Ma (0.12 %; all uncertainties <span class="inline-formula">2<i>σ</i></span>), within uncertainty of reference values. The smallest extracted domain (ca. <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">10</mn><mo>×</mo><mn mathvariant="normal">15</mn><mo>×</mo><mn mathvariant="normal">10</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="61pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="84f4b31fb299567abff6b1714c00e33a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gchron-2-177-2020-ie00001.svg" width="61pt" height="10pt" src="gchron-2-177-2020-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">µm</span>) yields an internal <span class="inline-formula"><sup>207</sup>Pb∕<sup>206</sup>Pb</span> age uncertainty of <span class="inline-formula">±0.37</span> %. Comparable control on cutting is achieved using a <span class="inline-formula">Ga<sup>+</sup></span>-source FIB instrument, though the slower speed of cutting limits potential application to larger grains. While the U–Pb data are between 0.5 % and 13.6 % discordant, the extent of discordance does not correlate with the ratio of material to ion-milled surface area, and results generate an accurate upper-intercept age in U–Pb concordia space of <span class="inline-formula">2060.20±0.91</span> Ma (0.044 %). Thus, we confirm the natural U–Pb variation and discordance within the Phalaborwa baddeleyite population observed with other geochronological techniques. Our results demonstrate the FIB-TIMS technique to be a powerful tool for highly accurate in situ <span class="inline-formula"><sup>207</sup>Pb∕<sup>206</sup>Pb</span> (and potentially U–Pb in concordant materials) age analysis, allowing dating of a wide variety of targets and processes newly accessible to geochronology.</p>https://gchron.copernicus.org/articles/2/177/2020/gchron-2-177-2020.pdf |