Spectrum Curves for Sturm–Liouville Problem with Integral Boundary Condition

We consider Sturm–Liouville problem with one integral type nonlocal boundary condition depending on three parameters γ (multiplier in nonlocal condition), ξ1, ξ2 ([ξ1, ξ2] is a domain of integration). The distribution of zeroes, poles, and constant eigenvalue points of Complex Characteristic Functi...

Full description

Bibliographic Details
Main Authors: Agnė Skučaitė, Artūras Štikonas
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2015-11-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/1036
id doaj-c88458e288634dff89b2cda3ec2e3fe2
record_format Article
spelling doaj-c88458e288634dff89b2cda3ec2e3fe22021-07-02T16:44:17ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102015-11-0120610.3846/13926292.2015.1116470Spectrum Curves for Sturm–Liouville Problem with Integral Boundary ConditionAgnė Skučaitė0Artūras Štikonas1Vilnius University Institute of Mathematics and Informatics, Akademijos str. 4, LT-08663 Vilnius, LithuaniaVilnius University Institute of Mathematics and Informatics, Akademijos str. 4, LT-08663 Vilnius, Lithuania; Vilnius University Faculty of Mathematics and Informatics, Naugarduko st. 24, LT-03225 Vilnius, Lithuania We consider Sturm–Liouville problem with one integral type nonlocal boundary condition depending on three parameters γ (multiplier in nonlocal condition), ξ1, ξ2 ([ξ1, ξ2] is a domain of integration). The distribution of zeroes, poles, and constant eigenvalue points of Complex Characteristic Function is presented. We investigate how Spectrum Curves depend on the parameters of nonlocal boundary conditions. In this paper we describe the behaviour of Spectrum Curves and classify critical points of Complex-Real Characteristic function. Phase Trajectories of critical points in Phase Space of the parameters ξ1, ξ2 are investigated. We present the results of modelling and computational analysis and illustrate those results with graphs. https://journals.vgtu.lt/index.php/MMA/article/view/1036Sturm–Liouville problemcharacteristic functionspectrum curvescritical pointintegral boundary condition
collection DOAJ
language English
format Article
sources DOAJ
author Agnė Skučaitė
Artūras Štikonas
spellingShingle Agnė Skučaitė
Artūras Štikonas
Spectrum Curves for Sturm–Liouville Problem with Integral Boundary Condition
Mathematical Modelling and Analysis
Sturm–Liouville problem
characteristic function
spectrum curves
critical point
integral boundary condition
author_facet Agnė Skučaitė
Artūras Štikonas
author_sort Agnė Skučaitė
title Spectrum Curves for Sturm–Liouville Problem with Integral Boundary Condition
title_short Spectrum Curves for Sturm–Liouville Problem with Integral Boundary Condition
title_full Spectrum Curves for Sturm–Liouville Problem with Integral Boundary Condition
title_fullStr Spectrum Curves for Sturm–Liouville Problem with Integral Boundary Condition
title_full_unstemmed Spectrum Curves for Sturm–Liouville Problem with Integral Boundary Condition
title_sort spectrum curves for sturm–liouville problem with integral boundary condition
publisher Vilnius Gediminas Technical University
series Mathematical Modelling and Analysis
issn 1392-6292
1648-3510
publishDate 2015-11-01
description We consider Sturm–Liouville problem with one integral type nonlocal boundary condition depending on three parameters γ (multiplier in nonlocal condition), ξ1, ξ2 ([ξ1, ξ2] is a domain of integration). The distribution of zeroes, poles, and constant eigenvalue points of Complex Characteristic Function is presented. We investigate how Spectrum Curves depend on the parameters of nonlocal boundary conditions. In this paper we describe the behaviour of Spectrum Curves and classify critical points of Complex-Real Characteristic function. Phase Trajectories of critical points in Phase Space of the parameters ξ1, ξ2 are investigated. We present the results of modelling and computational analysis and illustrate those results with graphs.
topic Sturm–Liouville problem
characteristic function
spectrum curves
critical point
integral boundary condition
url https://journals.vgtu.lt/index.php/MMA/article/view/1036
work_keys_str_mv AT agneskucaite spectrumcurvesforsturmliouvilleproblemwithintegralboundarycondition
AT arturasstikonas spectrumcurvesforsturmliouvilleproblemwithintegralboundarycondition
_version_ 1721326283692965888