Family of Enneper Minimal Surfaces
We consider a family of higher degree Enneper minimal surface <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula> for positive integers <i...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/6/12/281 |
id |
doaj-c8820edabdf64c13aa7c8047372dd387 |
---|---|
record_format |
Article |
spelling |
doaj-c8820edabdf64c13aa7c8047372dd3872020-11-24T23:48:14ZengMDPI AGMathematics2227-73902018-11-0161228110.3390/math6120281math6120281Family of Enneper Minimal SurfacesErhan Güler0Department of Mathematics, Faculty of Sciences, Bartın University, Bartın 74100, TurkeyWe consider a family of higher degree Enneper minimal surface <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula> for positive integers <i>m</i> in the three-dimensional Euclidean space <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">E</mi> <mn>3</mn> </msup> </semantics> </math> </inline-formula>. We compute algebraic equation, degree and integral free representation of Enneper minimal surface for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>. Finally, we give some results and relations for the family <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/6/12/281Enneper minimal surface familyWeierstrass representationalgebraic surfacedegreeintegral free representation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Erhan Güler |
spellingShingle |
Erhan Güler Family of Enneper Minimal Surfaces Mathematics Enneper minimal surface family Weierstrass representation algebraic surface degree integral free representation |
author_facet |
Erhan Güler |
author_sort |
Erhan Güler |
title |
Family of Enneper Minimal Surfaces |
title_short |
Family of Enneper Minimal Surfaces |
title_full |
Family of Enneper Minimal Surfaces |
title_fullStr |
Family of Enneper Minimal Surfaces |
title_full_unstemmed |
Family of Enneper Minimal Surfaces |
title_sort |
family of enneper minimal surfaces |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2018-11-01 |
description |
We consider a family of higher degree Enneper minimal surface <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula> for positive integers <i>m</i> in the three-dimensional Euclidean space <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">E</mi> <mn>3</mn> </msup> </semantics> </math> </inline-formula>. We compute algebraic equation, degree and integral free representation of Enneper minimal surface for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>. Finally, we give some results and relations for the family <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula>. |
topic |
Enneper minimal surface family Weierstrass representation algebraic surface degree integral free representation |
url |
https://www.mdpi.com/2227-7390/6/12/281 |
work_keys_str_mv |
AT erhanguler familyofenneperminimalsurfaces |
_version_ |
1725486550490284032 |