Family of Enneper Minimal Surfaces

We consider a family of higher degree Enneper minimal surface <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula> for positive integers <i...

Full description

Bibliographic Details
Main Author: Erhan Güler
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/6/12/281
id doaj-c8820edabdf64c13aa7c8047372dd387
record_format Article
spelling doaj-c8820edabdf64c13aa7c8047372dd3872020-11-24T23:48:14ZengMDPI AGMathematics2227-73902018-11-0161228110.3390/math6120281math6120281Family of Enneper Minimal SurfacesErhan Güler0Department of Mathematics, Faculty of Sciences, Bartın University, Bartın 74100, TurkeyWe consider a family of higher degree Enneper minimal surface <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula> for positive integers <i>m</i> in the three-dimensional Euclidean space <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">E</mi> <mn>3</mn> </msup> </semantics> </math> </inline-formula>. We compute algebraic equation, degree and integral free representation of Enneper minimal surface for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>. Finally, we give some results and relations for the family <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/6/12/281Enneper minimal surface familyWeierstrass representationalgebraic surfacedegreeintegral free representation
collection DOAJ
language English
format Article
sources DOAJ
author Erhan Güler
spellingShingle Erhan Güler
Family of Enneper Minimal Surfaces
Mathematics
Enneper minimal surface family
Weierstrass representation
algebraic surface
degree
integral free representation
author_facet Erhan Güler
author_sort Erhan Güler
title Family of Enneper Minimal Surfaces
title_short Family of Enneper Minimal Surfaces
title_full Family of Enneper Minimal Surfaces
title_fullStr Family of Enneper Minimal Surfaces
title_full_unstemmed Family of Enneper Minimal Surfaces
title_sort family of enneper minimal surfaces
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2018-11-01
description We consider a family of higher degree Enneper minimal surface <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula> for positive integers <i>m</i> in the three-dimensional Euclidean space <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">E</mi> <mn>3</mn> </msup> </semantics> </math> </inline-formula>. We compute algebraic equation, degree and integral free representation of Enneper minimal surface for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>. Finally, we give some results and relations for the family <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula>.
topic Enneper minimal surface family
Weierstrass representation
algebraic surface
degree
integral free representation
url https://www.mdpi.com/2227-7390/6/12/281
work_keys_str_mv AT erhanguler familyofenneperminimalsurfaces
_version_ 1725486550490284032