orphological Evaluation and Classification of Melon Genotypes in Khorasan Provinces (Razavi, North and South)

Introduction: Melon is a tropical species that originates from Iran or Africa and Iran, Afghanistan, Turkey, Russia, Saudi Arabia, India and China are the most important centers of genetic diversity of cultivated varieties (1). The original area for cantaloupe and melon is Iran. Dry and warm climate...

Full description

Bibliographic Details
Main Authors: Aireza sobhany, Majid Reza kiani
Format: Article
Language:fas
Published: Ferdowsi University of Mashhad 2017-08-01
Series:Majallah-i ̒Ulum-i Bāghbānī
Subjects:
Online Access:https://jhs.um.ac.ir/index.php/jhorts/article/view/22989
id doaj-c86a71b43c2c432799f663b705e58e22
record_format Article
collection DOAJ
language fas
format Article
sources DOAJ
author Aireza sobhany
Majid Reza kiani
spellingShingle Aireza sobhany
Majid Reza kiani
orphological Evaluation and Classification of Melon Genotypes in Khorasan Provinces (Razavi, North and South)
Majallah-i ̒Ulum-i Bāghbānī
Correlation
Dendograph
Diversity
Grouping
Sugar percent
author_facet Aireza sobhany
Majid Reza kiani
author_sort Aireza sobhany
title orphological Evaluation and Classification of Melon Genotypes in Khorasan Provinces (Razavi, North and South)
title_short orphological Evaluation and Classification of Melon Genotypes in Khorasan Provinces (Razavi, North and South)
title_full orphological Evaluation and Classification of Melon Genotypes in Khorasan Provinces (Razavi, North and South)
title_fullStr orphological Evaluation and Classification of Melon Genotypes in Khorasan Provinces (Razavi, North and South)
title_full_unstemmed orphological Evaluation and Classification of Melon Genotypes in Khorasan Provinces (Razavi, North and South)
title_sort orphological evaluation and classification of melon genotypes in khorasan provinces (razavi, north and south)
publisher Ferdowsi University of Mashhad
series Majallah-i ̒Ulum-i Bāghbānī
issn 2008-4730
2423-3986
publishDate 2017-08-01
description Introduction: Melon is a tropical species that originates from Iran or Africa and Iran, Afghanistan, Turkey, Russia, Saudi Arabia, India and China are the most important centers of genetic diversity of cultivated varieties (1). The original area for cantaloupe and melon is Iran. Dry and warm climate is the best condition for Melon. This plant needs heat and light for good grows. Cloudy and rainy weather at the time of fruit ripening may affect melon taste and quality(2). According to the FAO statistics in 2012, the total area devoted to melon was 1,339,006 hectares with an average yield of 23.8 tons per hectare and 31,925,787 tons production. The highest production belonged to China (55% of world production). Iran produces about 5.4 percent of world production which is about 1450000 tons from 80,000 hectares (2). Recently, a great number of studies have studied the correlation between melon yield and its components. The first branch (5), the number of primary branches, the number of fruits per plant and fruit weight per plant (6), length and width of fruit and fruit shape index were the most important melons traits which have been evaluated by other studies (4). Fruit yield has significant positive correlation with the length of the stem, primary branches, the date of the first appearance of female flowers and fruit weight. Studies revealed that there is a negative correlation between the number of fruits per plant and the average fruit weight. Materials and Methods: This study was conducted in 2008 with 17 landrace seeds collected from different locations of Khorasan provinces included Kashmar, sarakhs, Boshruye, Sabzevar, Dargaz and Bajestan. Experiment was designed based on randomized complete block design with three replications at agricultural Research Station of Khorasan Razavi. Results and Discussion: The cultivars did not show any different in the time of emergence as all of them emerged 4 to 7 days after the first irrigation. The comparison showed that melon cultivars were significantly different in all traits except of number of stems per plant. Melon cultivars KohsorkhKashmar, Abbasshori, Haji Mashallah and Jafarabadi were similar in yield and showed greater yield than other cultivars. In this experiment, Khatooni with maximum area in khorasan had highest yield in compare with other cultivars. Khatooni yield was 28.72 tons per hectare. The lowest yield belonged to ghanat s Boshrooye (equal to 18.83 tons per hectare), chahPaliz (17.4 tons per hectare) and kharmansarakhs (with 16.94 ton per hectar). Jafarabadi cultivar had the biggest fruits and ghanatboshrooye and bakharmansarakhs had the smallest fruits. The average weight of a melon fruit Jafarabadiwas 3.50 kg in white ghanat Boshruye or bakharman sarakhs was 1.93 kg. kohsorkh kashmar and abbasshory with 3.4 fruits per plant and mahali boshroye and zinabadwith 2 fruits per plant had the highest and lowest number of fruits respectively. Cluster analysis for all of traits put 17 melon cultivars into four groups, first group consists of a ghasri, zemestani Mashhad, the second group consisted of ghanat Boshrooyeh, Jabbari, mahali sarakhs, Jafarabadi,chah Faliz, mahalli Boshrooyeh, Dargazi, zinabadi, Bakharman sarakhs, the third group were included Abbaspoor and KohsorkhKashmar and finally Haj Masha Allah, khatoni and bandi were placed in fourth. ‍Cluster Analysis for yield put melon genotypes into 4 groups, first group consisted of dargazi, zinabadi, zemestani mashahd, mahalli boshrooyeh, mahalli sarakhs, ghasri and khaghani with average yield of 24.7 t/ha and the second group consisted of bakharman sarakhs, chah faliz and ghanat boshrooyeh genotypes with average yield of 23.6 t/ha, Jabbari and khatoni put in thrid group with average yield of 29.2 t/ha and the other genotypes put in 4th group with average of 30 t/ha yield. Cluster Analysis for number of fruits divided melon genotypes to 4 groups, First group with highest number of fruit consisted of dargazi, zinabadi, zemestani mashahd, mahalli boshrooyeh, bakharman sarakhs, chah faliz, ghanat boshrooyeh with average of 2.5 fruits. Factor analysis showed that traits used in this experiment covered 73 percent of variation in melong genotypes and traits were divided to 4 components the first one consisted of yield, fruit weight, fruit number, fruit length, fruit width, seed weight and dry weight which covered 16 percent of variations. The second component included length of plant with covering 11.7 percent of variation, fruit Hole diameter and fruit width were put in third and fourth component with covering 10 and 7 percent of variation respectively.
topic Correlation
Dendograph
Diversity
Grouping
Sugar percent
url https://jhs.um.ac.ir/index.php/jhorts/article/view/22989
work_keys_str_mv AT airezasobhany orphologicalevaluationandclassificationofmelongenotypesinkhorasanprovincesrazavinorthandsouth
AT majidrezakiani orphologicalevaluationandclassificationofmelongenotypesinkhorasanprovincesrazavinorthandsouth
_version_ 1725708265048768512
spelling doaj-c86a71b43c2c432799f663b705e58e222020-11-24T22:39:34ZfasFerdowsi University of MashhadMajallah-i ̒Ulum-i Bāghbānī2008-47302423-39862017-08-0130460561510.22067/jhorts4.v0i0.2298912053orphological Evaluation and Classification of Melon Genotypes in Khorasan Provinces (Razavi, North and South)Aireza sobhany0Majid Reza kiani1Khorasan Razavi Agricultural and Training and Natural Resources Research Center, AREEO, MashahdKhorasan Razavi Agricultural and Training and Natural Resources Research Center, AREEO, MashahdIntroduction: Melon is a tropical species that originates from Iran or Africa and Iran, Afghanistan, Turkey, Russia, Saudi Arabia, India and China are the most important centers of genetic diversity of cultivated varieties (1). The original area for cantaloupe and melon is Iran. Dry and warm climate is the best condition for Melon. This plant needs heat and light for good grows. Cloudy and rainy weather at the time of fruit ripening may affect melon taste and quality(2). According to the FAO statistics in 2012, the total area devoted to melon was 1,339,006 hectares with an average yield of 23.8 tons per hectare and 31,925,787 tons production. The highest production belonged to China (55% of world production). Iran produces about 5.4 percent of world production which is about 1450000 tons from 80,000 hectares (2). Recently, a great number of studies have studied the correlation between melon yield and its components. The first branch (5), the number of primary branches, the number of fruits per plant and fruit weight per plant (6), length and width of fruit and fruit shape index were the most important melons traits which have been evaluated by other studies (4). Fruit yield has significant positive correlation with the length of the stem, primary branches, the date of the first appearance of female flowers and fruit weight. Studies revealed that there is a negative correlation between the number of fruits per plant and the average fruit weight. Materials and Methods: This study was conducted in 2008 with 17 landrace seeds collected from different locations of Khorasan provinces included Kashmar, sarakhs, Boshruye, Sabzevar, Dargaz and Bajestan. Experiment was designed based on randomized complete block design with three replications at agricultural Research Station of Khorasan Razavi. Results and Discussion: The cultivars did not show any different in the time of emergence as all of them emerged 4 to 7 days after the first irrigation. The comparison showed that melon cultivars were significantly different in all traits except of number of stems per plant. Melon cultivars KohsorkhKashmar, Abbasshori, Haji Mashallah and Jafarabadi were similar in yield and showed greater yield than other cultivars. In this experiment, Khatooni with maximum area in khorasan had highest yield in compare with other cultivars. Khatooni yield was 28.72 tons per hectare. The lowest yield belonged to ghanat s Boshrooye (equal to 18.83 tons per hectare), chahPaliz (17.4 tons per hectare) and kharmansarakhs (with 16.94 ton per hectar). Jafarabadi cultivar had the biggest fruits and ghanatboshrooye and bakharmansarakhs had the smallest fruits. The average weight of a melon fruit Jafarabadiwas 3.50 kg in white ghanat Boshruye or bakharman sarakhs was 1.93 kg. kohsorkh kashmar and abbasshory with 3.4 fruits per plant and mahali boshroye and zinabadwith 2 fruits per plant had the highest and lowest number of fruits respectively. Cluster analysis for all of traits put 17 melon cultivars into four groups, first group consists of a ghasri, zemestani Mashhad, the second group consisted of ghanat Boshrooyeh, Jabbari, mahali sarakhs, Jafarabadi,chah Faliz, mahalli Boshrooyeh, Dargazi, zinabadi, Bakharman sarakhs, the third group were included Abbaspoor and KohsorkhKashmar and finally Haj Masha Allah, khatoni and bandi were placed in fourth. ‍Cluster Analysis for yield put melon genotypes into 4 groups, first group consisted of dargazi, zinabadi, zemestani mashahd, mahalli boshrooyeh, mahalli sarakhs, ghasri and khaghani with average yield of 24.7 t/ha and the second group consisted of bakharman sarakhs, chah faliz and ghanat boshrooyeh genotypes with average yield of 23.6 t/ha, Jabbari and khatoni put in thrid group with average yield of 29.2 t/ha and the other genotypes put in 4th group with average of 30 t/ha yield. Cluster Analysis for number of fruits divided melon genotypes to 4 groups, First group with highest number of fruit consisted of dargazi, zinabadi, zemestani mashahd, mahalli boshrooyeh, bakharman sarakhs, chah faliz, ghanat boshrooyeh with average of 2.5 fruits. Factor analysis showed that traits used in this experiment covered 73 percent of variation in melong genotypes and traits were divided to 4 components the first one consisted of yield, fruit weight, fruit number, fruit length, fruit width, seed weight and dry weight which covered 16 percent of variations. The second component included length of plant with covering 11.7 percent of variation, fruit Hole diameter and fruit width were put in third and fourth component with covering 10 and 7 percent of variation respectively.https://jhs.um.ac.ir/index.php/jhorts/article/view/22989CorrelationDendographDiversityGroupingSugar percent