Utility of Satellite and Aerial Images for Quantification of Canopy Cover and Infilling Rates of the Invasive Woody Species Honey Mesquite (<em>Prosopis Glandulosa</em>) on Rangeland
Woody plant encroachment into grasslands and rangelands is a world-wide phenomenon but detailed descriptions of changes in geographical distribution and infilling rates have not been well documented at large land scales. Remote sensing with either aerial or satellite images may provide a rapid means...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2012-06-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-4292/4/7/1947 |
id |
doaj-c82ffa95bad0434380441058927de41e |
---|---|
record_format |
Article |
spelling |
doaj-c82ffa95bad0434380441058927de41e2020-11-25T00:44:04ZengMDPI AGRemote Sensing2072-42922012-06-01471947196210.3390/rs4071947Utility of Satellite and Aerial Images for Quantification of Canopy Cover and Infilling Rates of the Invasive Woody Species Honey Mesquite (<em>Prosopis Glandulosa</em>) on RangelandMustafa MirikR. James AnsleyWoody plant encroachment into grasslands and rangelands is a world-wide phenomenon but detailed descriptions of changes in geographical distribution and infilling rates have not been well documented at large land scales. Remote sensing with either aerial or satellite images may provide a rapid means for accomplishing this task. Our objective was to compare the accuracy and utility of two types of images with contrasting spatial resolutions (1-m aerial and 30-m satellite) for classifying woody and herbaceous canopy cover and determining woody infilling rates in a large area of rangeland (800 km<sup>2</sup>) in north Texas that has been invaded by honey mesquite (<em>Prosopis glandulosa</em>). Accuracy assessment revealed that the overall accuracies for the classification of four land cover types (mesquite, grass, bare ground and other) were 94 and 87% with kappa coefficients of 0.89 and 0.77 for the 1-m and 30-m images, respectively. Over the entire area, the 30-m image over-estimated mesquite canopy cover by 9 percentage units (10 <em>vs.</em> 19%) and underestimated grass canopy cover by the same amount when compared to the 1-m image. The 30-m resolution image typically overestimated mesquite canopy cover within 225 4-ha sub-cells that contained a range of mesquite covers (1–70%) when compared to the 1-m image classification and was not suitable for quantifying infilling rates of this native invasive species. Documenting woody and non-woody canopy cover on large land areas is important for developing integrated, regional-scale management strategies for rangeland and grassland regions that have been invaded by woody plants.http://www.mdpi.com/2072-4292/4/7/1947bioenergybrush invasionbrush managementrangeland managementimage classificationremote sensingwoody-plant encroachment |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mustafa Mirik R. James Ansley |
spellingShingle |
Mustafa Mirik R. James Ansley Utility of Satellite and Aerial Images for Quantification of Canopy Cover and Infilling Rates of the Invasive Woody Species Honey Mesquite (<em>Prosopis Glandulosa</em>) on Rangeland Remote Sensing bioenergy brush invasion brush management rangeland management image classification remote sensing woody-plant encroachment |
author_facet |
Mustafa Mirik R. James Ansley |
author_sort |
Mustafa Mirik |
title |
Utility of Satellite and Aerial Images for Quantification of Canopy Cover and Infilling Rates of the Invasive Woody Species Honey Mesquite (<em>Prosopis Glandulosa</em>) on Rangeland |
title_short |
Utility of Satellite and Aerial Images for Quantification of Canopy Cover and Infilling Rates of the Invasive Woody Species Honey Mesquite (<em>Prosopis Glandulosa</em>) on Rangeland |
title_full |
Utility of Satellite and Aerial Images for Quantification of Canopy Cover and Infilling Rates of the Invasive Woody Species Honey Mesquite (<em>Prosopis Glandulosa</em>) on Rangeland |
title_fullStr |
Utility of Satellite and Aerial Images for Quantification of Canopy Cover and Infilling Rates of the Invasive Woody Species Honey Mesquite (<em>Prosopis Glandulosa</em>) on Rangeland |
title_full_unstemmed |
Utility of Satellite and Aerial Images for Quantification of Canopy Cover and Infilling Rates of the Invasive Woody Species Honey Mesquite (<em>Prosopis Glandulosa</em>) on Rangeland |
title_sort |
utility of satellite and aerial images for quantification of canopy cover and infilling rates of the invasive woody species honey mesquite (<em>prosopis glandulosa</em>) on rangeland |
publisher |
MDPI AG |
series |
Remote Sensing |
issn |
2072-4292 |
publishDate |
2012-06-01 |
description |
Woody plant encroachment into grasslands and rangelands is a world-wide phenomenon but detailed descriptions of changes in geographical distribution and infilling rates have not been well documented at large land scales. Remote sensing with either aerial or satellite images may provide a rapid means for accomplishing this task. Our objective was to compare the accuracy and utility of two types of images with contrasting spatial resolutions (1-m aerial and 30-m satellite) for classifying woody and herbaceous canopy cover and determining woody infilling rates in a large area of rangeland (800 km<sup>2</sup>) in north Texas that has been invaded by honey mesquite (<em>Prosopis glandulosa</em>). Accuracy assessment revealed that the overall accuracies for the classification of four land cover types (mesquite, grass, bare ground and other) were 94 and 87% with kappa coefficients of 0.89 and 0.77 for the 1-m and 30-m images, respectively. Over the entire area, the 30-m image over-estimated mesquite canopy cover by 9 percentage units (10 <em>vs.</em> 19%) and underestimated grass canopy cover by the same amount when compared to the 1-m image. The 30-m resolution image typically overestimated mesquite canopy cover within 225 4-ha sub-cells that contained a range of mesquite covers (1–70%) when compared to the 1-m image classification and was not suitable for quantifying infilling rates of this native invasive species. Documenting woody and non-woody canopy cover on large land areas is important for developing integrated, regional-scale management strategies for rangeland and grassland regions that have been invaded by woody plants. |
topic |
bioenergy brush invasion brush management rangeland management image classification remote sensing woody-plant encroachment |
url |
http://www.mdpi.com/2072-4292/4/7/1947 |
work_keys_str_mv |
AT mustafamirik utilityofsatelliteandaerialimagesforquantificationofcanopycoverandinfillingratesoftheinvasivewoodyspecieshoneymesquiteltemgtprosopisglandulosaltemgtonrangeland AT rjamesansley utilityofsatelliteandaerialimagesforquantificationofcanopycoverandinfillingratesoftheinvasivewoodyspecieshoneymesquiteltemgtprosopisglandulosaltemgtonrangeland |
_version_ |
1725276822560571392 |