A collaborative brain-computer interface for improving human performance.
Electroencephalogram (EEG) based brain-computer interfaces (BCI) have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2011-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3105048?pdf=render |
id |
doaj-c812209ed64a45d5a95e233bde5b3523 |
---|---|
record_format |
Article |
spelling |
doaj-c812209ed64a45d5a95e233bde5b35232020-11-25T00:53:44ZengPublic Library of Science (PLoS)PLoS ONE1932-62032011-01-0165e2042210.1371/journal.pone.0020422A collaborative brain-computer interface for improving human performance.Yijun WangTzyy-Ping JungElectroencephalogram (EEG) based brain-computer interfaces (BCI) have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1) Event-related potentials (ERP) averaging, (2) Feature concatenating, and (3) Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right) was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100-250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC), which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior.http://europepmc.org/articles/PMC3105048?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yijun Wang Tzyy-Ping Jung |
spellingShingle |
Yijun Wang Tzyy-Ping Jung A collaborative brain-computer interface for improving human performance. PLoS ONE |
author_facet |
Yijun Wang Tzyy-Ping Jung |
author_sort |
Yijun Wang |
title |
A collaborative brain-computer interface for improving human performance. |
title_short |
A collaborative brain-computer interface for improving human performance. |
title_full |
A collaborative brain-computer interface for improving human performance. |
title_fullStr |
A collaborative brain-computer interface for improving human performance. |
title_full_unstemmed |
A collaborative brain-computer interface for improving human performance. |
title_sort |
collaborative brain-computer interface for improving human performance. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2011-01-01 |
description |
Electroencephalogram (EEG) based brain-computer interfaces (BCI) have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1) Event-related potentials (ERP) averaging, (2) Feature concatenating, and (3) Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right) was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100-250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC), which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior. |
url |
http://europepmc.org/articles/PMC3105048?pdf=render |
work_keys_str_mv |
AT yijunwang acollaborativebraincomputerinterfaceforimprovinghumanperformance AT tzyypingjung acollaborativebraincomputerinterfaceforimprovinghumanperformance AT yijunwang collaborativebraincomputerinterfaceforimprovinghumanperformance AT tzyypingjung collaborativebraincomputerinterfaceforimprovinghumanperformance |
_version_ |
1725236689653202944 |