Euler Numbers and Polynomials Associated with Zeta Functions

For s∈ℂ, the Euler zeta function and the Hurwitz-type Euler zeta function are defined by ζE(s)=2∑n=1∞((−1)n/ns), and ζE(s,x)=2∑n=0∞((−1)n/(n+x)s). Thus, we note that the Euler zeta functions are entire functions in whole complex s-plane, and these zeta functions have the values of the Euler numbers...

Full description

Bibliographic Details
Main Author: Taekyun Kim
Format: Article
Language:English
Published: Hindawi Limited 2008-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2008/581582
Description
Summary:For s∈ℂ, the Euler zeta function and the Hurwitz-type Euler zeta function are defined by ζE(s)=2∑n=1∞((−1)n/ns), and ζE(s,x)=2∑n=0∞((−1)n/(n+x)s). Thus, we note that the Euler zeta functions are entire functions in whole complex s-plane, and these zeta functions have the values of the Euler numbers or the Euler polynomials at negative integers. That is, ζE(−k)=Ek∗, and ζE(−k,x)=Ek∗(x). We give some interesting identities between the Euler numbers and the zeta functions. Finally, we will give the new values of the Euler zeta function at positive even integers.
ISSN:1085-3375
1687-0409