Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers

The diffusiophoretic migration of a circular cylindrical particle in a nonelectrolyte solution with a solute concentration gradient normal to its axis is analytically studied for a small but finite P&#233;clet number <inline-formula> <math display="inline"> <semantics>...

Full description

Bibliographic Details
Main Authors: Yu C. Chang, Huan J. Keh
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Colloids and Interfaces
Subjects:
Online Access:https://www.mdpi.com/2504-5377/3/2/44
id doaj-c7f299fc4a0048e08171115a42b89cde
record_format Article
spelling doaj-c7f299fc4a0048e08171115a42b89cde2020-11-25T00:52:34ZengMDPI AGColloids and Interfaces2504-53772019-04-01324410.3390/colloids3020044colloids3020044Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet NumbersYu C. Chang0Huan J. Keh1Department of Chemical Engineering, National Taiwan University, Taipei 10617, TaiwanDepartment of Chemical Engineering, National Taiwan University, Taipei 10617, TaiwanThe diffusiophoretic migration of a circular cylindrical particle in a nonelectrolyte solution with a solute concentration gradient normal to its axis is analytically studied for a small but finite P&#233;clet number <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>. The interfacial layer of interaction between the solute molecules and the particle is taken to be thin, but the polarization of its mobile molecules is allowed. Using a method of matched asymptotic expansions, we solve the governing equations of conservation of the system and obtain an explicit formula for the diffusiophoretic velocity of the cylinder correct to the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>. It is found that the perturbed solute concentration and fluid velocity distributions have the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>, but the leading correction to the particle velocity has the higher order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> <mi>ln</mi> <mi>P</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>. The correction to the particle velocity to the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula> can be either positive or negative depending on the polarization parameter of the thin interfacial layer, establishing that the solute convection effect is complicated and can enhance or retard the diffusiophoretic motion. The particle velocity at <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics> </math> </inline-formula> can be about 17% smaller or 0.2% greater than that at <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. Under practical conditions, the solute convection effect on the diffusiophoretic velocity is much greater for a cylindrical particle than for a spherical particle, whose leading correction has the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2504-5377/3/2/44diffusiophoresiscolloidal cylinderthin polarized diffuse layersolute convection effectsingular perturbation method
collection DOAJ
language English
format Article
sources DOAJ
author Yu C. Chang
Huan J. Keh
spellingShingle Yu C. Chang
Huan J. Keh
Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers
Colloids and Interfaces
diffusiophoresis
colloidal cylinder
thin polarized diffuse layer
solute convection effect
singular perturbation method
author_facet Yu C. Chang
Huan J. Keh
author_sort Yu C. Chang
title Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers
title_short Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers
title_full Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers
title_fullStr Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers
title_full_unstemmed Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers
title_sort diffusiophoresis of a colloidal cylinder at small finite péclet numbers
publisher MDPI AG
series Colloids and Interfaces
issn 2504-5377
publishDate 2019-04-01
description The diffusiophoretic migration of a circular cylindrical particle in a nonelectrolyte solution with a solute concentration gradient normal to its axis is analytically studied for a small but finite P&#233;clet number <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>. The interfacial layer of interaction between the solute molecules and the particle is taken to be thin, but the polarization of its mobile molecules is allowed. Using a method of matched asymptotic expansions, we solve the governing equations of conservation of the system and obtain an explicit formula for the diffusiophoretic velocity of the cylinder correct to the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>. It is found that the perturbed solute concentration and fluid velocity distributions have the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>, but the leading correction to the particle velocity has the higher order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> <mi>ln</mi> <mi>P</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>. The correction to the particle velocity to the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula> can be either positive or negative depending on the polarization parameter of the thin interfacial layer, establishing that the solute convection effect is complicated and can enhance or retard the diffusiophoretic motion. The particle velocity at <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics> </math> </inline-formula> can be about 17% smaller or 0.2% greater than that at <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. Under practical conditions, the solute convection effect on the diffusiophoretic velocity is much greater for a cylindrical particle than for a spherical particle, whose leading correction has the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>.
topic diffusiophoresis
colloidal cylinder
thin polarized diffuse layer
solute convection effect
singular perturbation method
url https://www.mdpi.com/2504-5377/3/2/44
work_keys_str_mv AT yucchang diffusiophoresisofacolloidalcylinderatsmallfinitepecletnumbers
AT huanjkeh diffusiophoresisofacolloidalcylinderatsmallfinitepecletnumbers
_version_ 1725241625215500288