Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers
The diffusiophoretic migration of a circular cylindrical particle in a nonelectrolyte solution with a solute concentration gradient normal to its axis is analytically studied for a small but finite Péclet number <inline-formula> <math display="inline"> <semantics>...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-04-01
|
Series: | Colloids and Interfaces |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-5377/3/2/44 |
id |
doaj-c7f299fc4a0048e08171115a42b89cde |
---|---|
record_format |
Article |
spelling |
doaj-c7f299fc4a0048e08171115a42b89cde2020-11-25T00:52:34ZengMDPI AGColloids and Interfaces2504-53772019-04-01324410.3390/colloids3020044colloids3020044Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet NumbersYu C. Chang0Huan J. Keh1Department of Chemical Engineering, National Taiwan University, Taipei 10617, TaiwanDepartment of Chemical Engineering, National Taiwan University, Taipei 10617, TaiwanThe diffusiophoretic migration of a circular cylindrical particle in a nonelectrolyte solution with a solute concentration gradient normal to its axis is analytically studied for a small but finite Péclet number <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>. The interfacial layer of interaction between the solute molecules and the particle is taken to be thin, but the polarization of its mobile molecules is allowed. Using a method of matched asymptotic expansions, we solve the governing equations of conservation of the system and obtain an explicit formula for the diffusiophoretic velocity of the cylinder correct to the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>. It is found that the perturbed solute concentration and fluid velocity distributions have the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>, but the leading correction to the particle velocity has the higher order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> <mi>ln</mi> <mi>P</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>. The correction to the particle velocity to the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula> can be either positive or negative depending on the polarization parameter of the thin interfacial layer, establishing that the solute convection effect is complicated and can enhance or retard the diffusiophoretic motion. The particle velocity at <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics> </math> </inline-formula> can be about 17% smaller or 0.2% greater than that at <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. Under practical conditions, the solute convection effect on the diffusiophoretic velocity is much greater for a cylindrical particle than for a spherical particle, whose leading correction has the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2504-5377/3/2/44diffusiophoresiscolloidal cylinderthin polarized diffuse layersolute convection effectsingular perturbation method |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yu C. Chang Huan J. Keh |
spellingShingle |
Yu C. Chang Huan J. Keh Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers Colloids and Interfaces diffusiophoresis colloidal cylinder thin polarized diffuse layer solute convection effect singular perturbation method |
author_facet |
Yu C. Chang Huan J. Keh |
author_sort |
Yu C. Chang |
title |
Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers |
title_short |
Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers |
title_full |
Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers |
title_fullStr |
Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers |
title_full_unstemmed |
Diffusiophoresis of a Colloidal Cylinder at Small Finite Péclet Numbers |
title_sort |
diffusiophoresis of a colloidal cylinder at small finite péclet numbers |
publisher |
MDPI AG |
series |
Colloids and Interfaces |
issn |
2504-5377 |
publishDate |
2019-04-01 |
description |
The diffusiophoretic migration of a circular cylindrical particle in a nonelectrolyte solution with a solute concentration gradient normal to its axis is analytically studied for a small but finite Péclet number <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>. The interfacial layer of interaction between the solute molecules and the particle is taken to be thin, but the polarization of its mobile molecules is allowed. Using a method of matched asymptotic expansions, we solve the governing equations of conservation of the system and obtain an explicit formula for the diffusiophoretic velocity of the cylinder correct to the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>. It is found that the perturbed solute concentration and fluid velocity distributions have the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>, but the leading correction to the particle velocity has the higher order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> <mi>ln</mi> <mi>P</mi> <mi>e</mi> </mrow> </semantics> </math> </inline-formula>. The correction to the particle velocity to the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula> can be either positive or negative depending on the polarization parameter of the thin interfacial layer, establishing that the solute convection effect is complicated and can enhance or retard the diffusiophoretic motion. The particle velocity at <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics> </math> </inline-formula> can be about 17% smaller or 0.2% greater than that at <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>e</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>. Under practical conditions, the solute convection effect on the diffusiophoretic velocity is much greater for a cylindrical particle than for a spherical particle, whose leading correction has the order <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msup> <mi>e</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula>. |
topic |
diffusiophoresis colloidal cylinder thin polarized diffuse layer solute convection effect singular perturbation method |
url |
https://www.mdpi.com/2504-5377/3/2/44 |
work_keys_str_mv |
AT yucchang diffusiophoresisofacolloidalcylinderatsmallfinitepecletnumbers AT huanjkeh diffusiophoresisofacolloidalcylinderatsmallfinitepecletnumbers |
_version_ |
1725241625215500288 |