Prognostic significance of specific EEG patterns after cardiac arrest in a Lisbon Cohort

Objective: To evaluate if EEG patterns considered highly malignant are reliable predictors not only of poor neurological outcome but also reliable predictors of death. Methods: Retrospectively, EEGs from Cardiac Arrest (CA) patients of two teaching hospitals in Lisbon were classified into 3 groups:...

Full description

Bibliographic Details
Main Authors: Beatriz Guedes, Manuel Manita, Ana Rita Peralta, Ana Catarina Franco, Luís Bento, Carla Bentes
Format: Article
Language:English
Published: Elsevier 2020-01-01
Series:Clinical Neurophysiology Practice
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2467981X20300214
id doaj-c7f06db48c2b4d588ddd0e440348b599
record_format Article
spelling doaj-c7f06db48c2b4d588ddd0e440348b5992020-12-21T04:47:50ZengElsevierClinical Neurophysiology Practice2467-981X2020-01-015147151Prognostic significance of specific EEG patterns after cardiac arrest in a Lisbon CohortBeatriz Guedes0Manuel Manita1Ana Rita Peralta2Ana Catarina Franco3Luís Bento4Carla Bentes5Área de Neurociências, Unidade de Neurofisiologia Clínica, Hospital de São José, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal; Corresponding author at: Centro Hospitalar Universitário de Lisboa, Central Unidade de Neurofisiologia Clínica, Rua José António Serrano, 1150-199 Lisboa, Portugal.Área de Neurociências, Unidade de Neurofisiologia Clínica, Hospital de São José, Centro Hospitalar Universitário de Lisboa Central, Lisboa, PortugalLaboratório EEG/Sono – Unidade de Monitorização Neurofisiológica, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria - Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal; Centro de Referência para Epilepsia Refratária (from the European Reference Network-EpiCARE), Hospital de Santa Maria - Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisboa, PortugalLaboratório EEG/Sono – Unidade de Monitorização Neurofisiológica, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria - Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal; Centro de Referência para Epilepsia Refratária (from the European Reference Network-EpiCARE), Hospital de Santa Maria - Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisboa, PortugalÁrea de Urgência e Cuidados Intensivos, Unidade de Urgência Médica, Hospital de São José, Centro Hospitalar de Lisboa Central, Lisboa, PortugalLaboratório EEG/Sono – Unidade de Monitorização Neurofisiológica, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria - Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal; Centro de Referência para Epilepsia Refratária (from the European Reference Network-EpiCARE), Hospital de Santa Maria - Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisboa, PortugalObjective: To evaluate if EEG patterns considered highly malignant are reliable predictors not only of poor neurological outcome but also reliable predictors of death. Methods: Retrospectively, EEGs from Cardiac Arrest (CA) patients of two teaching hospitals in Lisbon were classified into 3 groups: highly malignant, malignant, and benign groups. Outcome was assessed at 6 months after CA by CPC (Cerebral Performance Categories) scale. We evaluated the accuracy of these patterns to predict poor neurological outcome and death. Results: We included 106 patients for analysis. All patients with a highly malignant EEG (n = 37) presented a poor neurological outcome. Those patterns were also associated with death. Malignant EEG patterns were not associated with poor neurological outcome. Benign EEG patterns were associated with good neurological recovery (p < 0.0001). Conclusion: Highly malignant EEG patterns were strongly associated with poor neurological outcome and can be considered to be predictors of death. Significance: This study increased the knowledge about the value of EEG as a tool in outcome prediction of patients after cardiac arrest.http://www.sciencedirect.com/science/article/pii/S2467981X20300214Cardiac ArrestOutcomeEEG PatternHighly MalignantMalignantBenign
collection DOAJ
language English
format Article
sources DOAJ
author Beatriz Guedes
Manuel Manita
Ana Rita Peralta
Ana Catarina Franco
Luís Bento
Carla Bentes
spellingShingle Beatriz Guedes
Manuel Manita
Ana Rita Peralta
Ana Catarina Franco
Luís Bento
Carla Bentes
Prognostic significance of specific EEG patterns after cardiac arrest in a Lisbon Cohort
Clinical Neurophysiology Practice
Cardiac Arrest
Outcome
EEG Pattern
Highly Malignant
Malignant
Benign
author_facet Beatriz Guedes
Manuel Manita
Ana Rita Peralta
Ana Catarina Franco
Luís Bento
Carla Bentes
author_sort Beatriz Guedes
title Prognostic significance of specific EEG patterns after cardiac arrest in a Lisbon Cohort
title_short Prognostic significance of specific EEG patterns after cardiac arrest in a Lisbon Cohort
title_full Prognostic significance of specific EEG patterns after cardiac arrest in a Lisbon Cohort
title_fullStr Prognostic significance of specific EEG patterns after cardiac arrest in a Lisbon Cohort
title_full_unstemmed Prognostic significance of specific EEG patterns after cardiac arrest in a Lisbon Cohort
title_sort prognostic significance of specific eeg patterns after cardiac arrest in a lisbon cohort
publisher Elsevier
series Clinical Neurophysiology Practice
issn 2467-981X
publishDate 2020-01-01
description Objective: To evaluate if EEG patterns considered highly malignant are reliable predictors not only of poor neurological outcome but also reliable predictors of death. Methods: Retrospectively, EEGs from Cardiac Arrest (CA) patients of two teaching hospitals in Lisbon were classified into 3 groups: highly malignant, malignant, and benign groups. Outcome was assessed at 6 months after CA by CPC (Cerebral Performance Categories) scale. We evaluated the accuracy of these patterns to predict poor neurological outcome and death. Results: We included 106 patients for analysis. All patients with a highly malignant EEG (n = 37) presented a poor neurological outcome. Those patterns were also associated with death. Malignant EEG patterns were not associated with poor neurological outcome. Benign EEG patterns were associated with good neurological recovery (p < 0.0001). Conclusion: Highly malignant EEG patterns were strongly associated with poor neurological outcome and can be considered to be predictors of death. Significance: This study increased the knowledge about the value of EEG as a tool in outcome prediction of patients after cardiac arrest.
topic Cardiac Arrest
Outcome
EEG Pattern
Highly Malignant
Malignant
Benign
url http://www.sciencedirect.com/science/article/pii/S2467981X20300214
work_keys_str_mv AT beatrizguedes prognosticsignificanceofspecificeegpatternsaftercardiacarrestinalisboncohort
AT manuelmanita prognosticsignificanceofspecificeegpatternsaftercardiacarrestinalisboncohort
AT anaritaperalta prognosticsignificanceofspecificeegpatternsaftercardiacarrestinalisboncohort
AT anacatarinafranco prognosticsignificanceofspecificeegpatternsaftercardiacarrestinalisboncohort
AT luisbento prognosticsignificanceofspecificeegpatternsaftercardiacarrestinalisboncohort
AT carlabentes prognosticsignificanceofspecificeegpatternsaftercardiacarrestinalisboncohort
_version_ 1724375634125258752