Noise and Memristance Variation Tolerance of Single Crossbar Architectures for Neuromorphic Image Recognition

We performed a comparative study on the Gaussian noise and memristance variation tolerance of three crossbar architectures, namely the complementary crossbar architecture, the twin crossbar architecture, and the single crossbar architecture, for neuromorphic image recognition and conducted an experi...

Full description

Bibliographic Details
Main Authors: Minh Le, Thi Kim Hang Pham, Son Ngoc Truong
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/12/6/690
Description
Summary:We performed a comparative study on the Gaussian noise and memristance variation tolerance of three crossbar architectures, namely the complementary crossbar architecture, the twin crossbar architecture, and the single crossbar architecture, for neuromorphic image recognition and conducted an experiment to determine the performance of the single crossbar architecture for simple pattern recognition. Ten grayscale images with the size of 32 × 32 pixels were used for testing and comparing the recognition rates of the three architectures. The recognition rates of the three memristor crossbar architectures were compared to each other when the noise level of images was varied from −10 to 4 dB and the percentage of memristance variation was varied from 0% to 40%. The simulation results showed that the single crossbar architecture had the best Gaussian noise input and memristance variation tolerance in terms of recognition rate. At the signal-to-noise ratio of −10 dB, the single crossbar architecture produced a recognition rate of 91%, which was 2% and 87% higher than those of the twin crossbar architecture and the complementary crossbar architecture, respectively. When the memristance variation percentage reached 40%, the single crossbar architecture had a recognition rate as high as 67.8%, which was 1.8% and 9.8% higher than the recognition rates of the twin crossbar architecture and the complementary crossbar architecture, respectively. Finally, we carried out an experiment to determine the performance of the single crossbar architecture with a fabricated 3 × 3 memristor crossbar based on carbon fiber and aluminum film. The experiment proved successful implementation of pattern recognition with the single crossbar architecture.
ISSN:2072-666X