Vibrio coralliilyticus search patterns across an oxygen gradient.

The coral pathogen, Vibrio coralliilyticus shows specific chemotactic search pattern preference for oxic and anoxic conditions, with the newly identified 3-step flick search pattern dominating the patterns used in oxic conditions. We analyzed motile V. coralliilyticus cells for behavioral changes wi...

Full description

Bibliographic Details
Main Authors: Karina M Winn, David G Bourne, James G Mitchell
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3707849?pdf=render
Description
Summary:The coral pathogen, Vibrio coralliilyticus shows specific chemotactic search pattern preference for oxic and anoxic conditions, with the newly identified 3-step flick search pattern dominating the patterns used in oxic conditions. We analyzed motile V. coralliilyticus cells for behavioral changes with varying oxygen concentrations to mimic the natural coral environment exhibited during light and dark conditions. Results showed that 3-step flicks were 1.4× (P = 0.006) more likely to occur in oxic conditions than anoxic conditions with mean values of 18 flicks (95% CI = 0.4, n = 53) identified in oxic regions compared to 13 (95% CI = 0.5, n = 38) at anoxic areas. In contrast, run and reverse search patterns were more frequent in anoxic regions with a mean value of 15 (95% CI = 0.7, n = 46), compared to a mean value of 10 (95% CI = 0.8, n = 29) at oxic regions. Straight swimming search patterns remained similar across oxic and anoxic regions with a mean value of 13 (95% CI = 0.7, n = oxic: 13, anoxic: 14). V. coralliilyticus remained motile in oxic and anoxic conditions, however, the 3-step flick search pattern occurred in oxic conditions. This result provides an approach to further investigate the 3-step flick.
ISSN:1932-6203