An evaluation of options to mitigate voltage rise due to increasing PV penetration in distribution networks
Australia and most other countries are adopting renewable energy generation as the dominant means of reducing dependence on fossil fuels. This has been made more feasible by the exponential take-up of solar photovoltaic (PV) systems and their concurrent production scale-up and cost decline. Rooftop...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2017-01-01
|
Series: | Renewable Energy and Environmental Sustainability |
Online Access: | https://www.rees-journal.org/articles/rees/full_html/2017/01/rees170026s/rees170026s.html |
id |
doaj-c7b003c02c2640ea83152b6e0fcbebf9 |
---|---|
record_format |
Article |
spelling |
doaj-c7b003c02c2640ea83152b6e0fcbebf92020-11-25T04:05:31ZengEDP SciencesRenewable Energy and Environmental Sustainability2493-94392017-01-0123910.1051/rees/2017026rees170026sAn evaluation of options to mitigate voltage rise due to increasing PV penetration in distribution networksCarter Craig E.Calais MartinaLu PengchengCrocker Julian A.Australia and most other countries are adopting renewable energy generation as the dominant means of reducing dependence on fossil fuels. This has been made more feasible by the exponential take-up of solar photovoltaic (PV) systems and their concurrent production scale-up and cost decline. Rooftop solar PV, combined with battery storage, seems likely to be the dominant means of providing household electricity needs. In response to the technical challenges from rooftop PV, network utilities have implemented various low cost options to cope with PV’s impact on network voltages. However, if we want this clean energy technology to fully utilise the available roof space and eventually meet residential electricity needs, additional hardware, control and commercial options will need to be adopted by both network utilities and their customers to overcome the technical barriers, especially voltage rise. This paper presents the authors’ evaluations of options to mitigate voltage rise, including operating solar inverters with reactive power absorption (var absorbing), dependent only on solar power output or operating the solar inverters in a volt–var response mode (voltage droop control) where the inverter adjusts its reactive power (Q) in response to changes in its terminal voltage – Q(V). This paper also considers the fulltime Q(V) option, where an inverter’s reactive power capacity is independent of solar conditions – statcom mode. The network utility option of using line drop compensation (LDC – used on long rural MV feeders) on urban MV feeders during daylight hours is assessed to lessen voltage rise on LV feeders with low net loading or reverse power flow due to high solar PV generation. The paper concludes that a combination of solar inverters performing fast fulltime voltage droop control outside a voltage deadband (statcom mode) and HV/MV substation transformers with slow acting daytime LDC mitigates voltage rise, whilst limiting feeder reactive power requirements.https://www.rees-journal.org/articles/rees/full_html/2017/01/rees170026s/rees170026s.html |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Carter Craig E. Calais Martina Lu Pengcheng Crocker Julian A. |
spellingShingle |
Carter Craig E. Calais Martina Lu Pengcheng Crocker Julian A. An evaluation of options to mitigate voltage rise due to increasing PV penetration in distribution networks Renewable Energy and Environmental Sustainability |
author_facet |
Carter Craig E. Calais Martina Lu Pengcheng Crocker Julian A. |
author_sort |
Carter Craig E. |
title |
An evaluation of options to mitigate voltage rise due to increasing PV penetration in distribution networks |
title_short |
An evaluation of options to mitigate voltage rise due to increasing PV penetration in distribution networks |
title_full |
An evaluation of options to mitigate voltage rise due to increasing PV penetration in distribution networks |
title_fullStr |
An evaluation of options to mitigate voltage rise due to increasing PV penetration in distribution networks |
title_full_unstemmed |
An evaluation of options to mitigate voltage rise due to increasing PV penetration in distribution networks |
title_sort |
evaluation of options to mitigate voltage rise due to increasing pv penetration in distribution networks |
publisher |
EDP Sciences |
series |
Renewable Energy and Environmental Sustainability |
issn |
2493-9439 |
publishDate |
2017-01-01 |
description |
Australia and most other countries are adopting renewable energy generation as the dominant means of reducing dependence on fossil fuels. This has been made more feasible by the exponential take-up of solar photovoltaic (PV) systems and their concurrent production scale-up and cost decline. Rooftop solar PV, combined with battery storage, seems likely to be the dominant means of providing household electricity needs. In response to the technical challenges from rooftop PV, network utilities have implemented various low cost options to cope with PV’s impact on network voltages. However, if we want this clean energy technology to fully utilise the available roof space and eventually meet residential electricity needs, additional hardware, control and commercial options will need to be adopted by both network utilities and their customers to overcome the technical barriers, especially voltage rise. This paper presents the authors’ evaluations of options to mitigate voltage rise, including operating solar inverters with reactive power absorption (var absorbing), dependent only on solar power output or operating the solar inverters in a volt–var response mode (voltage droop control) where the inverter adjusts its reactive power (Q) in response to changes in its terminal voltage – Q(V). This paper also considers the fulltime Q(V) option, where an inverter’s reactive power capacity is independent of solar conditions – statcom mode. The network utility option of using line drop compensation (LDC – used on long rural MV feeders) on urban MV feeders during daylight hours is assessed to lessen voltage rise on LV feeders with low net loading or reverse power flow due to high solar PV generation. The paper concludes that a combination of solar inverters performing fast fulltime voltage droop control outside a voltage deadband (statcom mode) and HV/MV substation transformers with slow acting daytime LDC mitigates voltage rise, whilst limiting feeder reactive power requirements. |
url |
https://www.rees-journal.org/articles/rees/full_html/2017/01/rees170026s/rees170026s.html |
work_keys_str_mv |
AT cartercraige anevaluationofoptionstomitigatevoltageriseduetoincreasingpvpenetrationindistributionnetworks AT calaismartina anevaluationofoptionstomitigatevoltageriseduetoincreasingpvpenetrationindistributionnetworks AT lupengcheng anevaluationofoptionstomitigatevoltageriseduetoincreasingpvpenetrationindistributionnetworks AT crockerjuliana anevaluationofoptionstomitigatevoltageriseduetoincreasingpvpenetrationindistributionnetworks AT cartercraige evaluationofoptionstomitigatevoltageriseduetoincreasingpvpenetrationindistributionnetworks AT calaismartina evaluationofoptionstomitigatevoltageriseduetoincreasingpvpenetrationindistributionnetworks AT lupengcheng evaluationofoptionstomitigatevoltageriseduetoincreasingpvpenetrationindistributionnetworks AT crockerjuliana evaluationofoptionstomitigatevoltageriseduetoincreasingpvpenetrationindistributionnetworks |
_version_ |
1724433576214134784 |