Existence of weak solutions for a nonuniformly elliptic nonlinear system in R^N
We study the nonuniformly elliptic, nonlinear system $$displaylines{ - hbox{div}(h_1(x) abla u)+ a(x)u = f(x,u,v) quad ext{in } mathbb{R}^N,cr - hbox{div}(h_2(x) abla v)+ b(x)v = g(x,u,v) quad ext{in } mathbb{R}^N. }$$ Under growth and regularity conditions on the nonlinearities $f$ and $g...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2008-08-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2008/119/abstr.html |
Summary: | We study the nonuniformly elliptic, nonlinear system $$displaylines{ - hbox{div}(h_1(x) abla u)+ a(x)u = f(x,u,v) quad ext{in } mathbb{R}^N,cr - hbox{div}(h_2(x) abla v)+ b(x)v = g(x,u,v) quad ext{in } mathbb{R}^N. }$$ Under growth and regularity conditions on the nonlinearities $f$ and $g$, we obtain weak solutions in a subspace of the Sobolev space $H^1(mathbb{R}^N, mathbb{R}^2)$ by applying a variant of the Mountain Pass Theorem. |
---|---|
ISSN: | 1072-6691 |