Existence of weak solutions for a nonuniformly elliptic nonlinear system in R^N

We study the nonuniformly elliptic, nonlinear system $$displaylines{ - hbox{div}(h_1(x) abla u)+ a(x)u = f(x,u,v) quad ext{in } mathbb{R}^N,cr - hbox{div}(h_2(x) abla v)+ b(x)v = g(x,u,v) quad ext{in } mathbb{R}^N. }$$ Under growth and regularity conditions on the nonlinearities $f$ and $g...

Full description

Bibliographic Details
Main Author: Nguyen Thanh Chung
Format: Article
Language:English
Published: Texas State University 2008-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2008/119/abstr.html
Description
Summary:We study the nonuniformly elliptic, nonlinear system $$displaylines{ - hbox{div}(h_1(x) abla u)+ a(x)u = f(x,u,v) quad ext{in } mathbb{R}^N,cr - hbox{div}(h_2(x) abla v)+ b(x)v = g(x,u,v) quad ext{in } mathbb{R}^N. }$$ Under growth and regularity conditions on the nonlinearities $f$ and $g$, we obtain weak solutions in a subspace of the Sobolev space $H^1(mathbb{R}^N, mathbb{R}^2)$ by applying a variant of the Mountain Pass Theorem.
ISSN:1072-6691