Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment
Molecular networking connects molecules based on their fragment ion mass spectra (MS2), but may leave adduct species from the same molecular family separate. To address this issue, the authors develop a networking approach that fuses MS1- and MS2-based networks and integrate it into the GNPS environ...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-06-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-021-23953-9 |
Summary: | Molecular networking connects molecules based on their fragment ion mass spectra (MS2), but may leave adduct species from the same molecular family separate. To address this issue, the authors develop a networking approach that fuses MS1- and MS2-based networks and integrate it into the GNPS environment. |
---|---|
ISSN: | 2041-1723 |