The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin’s series

For the perimeter $P(a,b)$ of an ellipse with the semi-axes $a\ge b\ge 0$ a sequence $Q_n(a,b)$ is constructed such that the relative error of the approximation $ P(a,b)\approx Q_n(a,b)$ satisfies the following inequalities \begin{align*} 0\le -\frac{P(a,b)-Q_n(a,b)}{P(a,b)}&\le \frac{(1-q^...

Full description

Bibliographic Details
Main Author: Vito Lampret
Format: Article
Language:English
Published: Universidad de La Frontera 2019-08-01
Series:Cubo
Subjects:
Online Access:http://revistas.ufro.cl/ojs/index.php/cubo/article/view/2158/1889
Description
Summary:For the perimeter $P(a,b)$ of an ellipse with the semi-axes $a\ge b\ge 0$ a sequence $Q_n(a,b)$ is constructed such that the relative error of the approximation $ P(a,b)\approx Q_n(a,b)$ satisfies the following inequalities \begin{align*} 0\le -\frac{P(a,b)-Q_n(a,b)}{P(a,b)}&\le \frac{(1-q^2)^{n+1}}{(2n+1)^2} \\ & \le \frac{1}{(2n+1)^2}\,e^{-q^2(n+1)}, \end{align*} true for $n\in\N$ and $q=\frac{b}{a}\in[0,1]$.
ISSN:0716-7776
0719-0646