Serum Samples That Have Been Stored Long-Term (>10 Years) Can Be Used as a Suitable Data Source for Developing Cardiovascular Risk Prediction Models in Large Observational Rheumatoid Arthritis Cohorts

Objective. There is an unmet need for a specific cardiovascular risk (CV) algorithm for rheumatoid arthritis (RA) patients. Lipoprotein data are often not available in RA cohorts but could be obtained from frozen blood samples. The objective of this study was to estimate the storage effect on lipopr...

Full description

Bibliographic Details
Main Authors: Elke E. A. Arts, Calin D. Popa, Jacqueline P. Smith, Onno J. Arntz, Fons A. van de Loo, Rogier Donders, Anne Grete P. Semb, George D. Kitas, Piet L. C. M. van Riel, Jaap Fransen
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2014/930925
Description
Summary:Objective. There is an unmet need for a specific cardiovascular risk (CV) algorithm for rheumatoid arthritis (RA) patients. Lipoprotein data are often not available in RA cohorts but could be obtained from frozen blood samples. The objective of this study was to estimate the storage effect on lipoproteins in long-term (>10 years) frozen serum samples. Methods. Data were used from an inception RA cohort. Multiple serum samples from 152 patients were analyzed for lipoproteins, being frozen for 1–26 years at −20°C. Storage effect on lipoproteins was estimated using longitudinal regression analyses and a lipid decay correction factor was developed. Clinical impact of the storage effect on lipoproteins was assessed by calculating the number of patients reclassified to another CV risk group according to the SCORE risk calculator after applying the decay correction factor. Results. There was a significant effect of storage time on total cholesterol (TC) (P < 0.001) and high density lipoprotein cholesterol (HDL-c) levels (P < 0.001), not LDL-c (P = 0.83). The lipid decay correction factor was 0.03 mmol/L and 0.024 mmol/L per additional year of storage for TC and HDL-c, respectively. The TC : HDL ratio decreased after correction for storage effect. After correction, only 5% of patients were reclassified to another CV risk group. Conclusion. A modest storage decay effect on lipoproteins was found that is unlikely to significantly affect CV risk stratification. Serum samples that have been stored long-term (>10 years) can be used to obtain valid lipid levels for developing CV risk prediction models in RA cohorts, even without applying a decay correction factor.
ISSN:2314-6133
2314-6141