Fast Frequency Acquisition and Phase Locking of Nonplanar Ring Oscillators

Optical phase locking is a critical technique in space coherent optical communication and active coherent laser beam combining. In a typical optical phase locking loop based on nonplanar ring oscillators, the pull-in range is normally less than 1 MHz, limited by loop delay and frequency tuning bandw...

Full description

Bibliographic Details
Main Authors: Yunxiang Wang, Chen Wang, Yangping Tao, Yang Liu, Qiang Zhou, Jun Su, Zhiyong Wang, Shuangjin Shi, Qi Qiu
Format: Article
Language:English
Published: MDPI AG 2017-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/7/10/1032
Description
Summary:Optical phase locking is a critical technique in space coherent optical communication and active coherent laser beam combining. In a typical optical phase locking loop based on nonplanar ring oscillators, the pull-in range is normally less than 1 MHz, limited by loop delay and frequency tuning bandwidth of the laser source. Phase locking cannot be achieved at large initial frequency differences. In this work, a fast laser frequency acquisition method is demonstrated. The frequency difference between the signal and local lasers was measured via frequency dividing and period counting, and the frequency control signal was generated by a frequency discrimination and control module, to reduce the frequency difference to the pull-in range of the loop. Under the coordinating function of the loop filter and the frequency discrimination and control module, phase locking under a large initial frequency difference was achieved. The frequency acquisition range reached 164 MHz, and the acquisition and locking time was measured to be 440 ms. Additionally, the acquisition time was shortened with the decrease in initial frequency difference.
ISSN:2076-3417