An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle
<p>Abstract</p> <p>Background</p> <p>Distance matrix methods constitute a major family of phylogenetic estimation methods, and the minimum evolution (ME) principle (aiming at recovering the phylogeny with shortest length) is one of the most commonly used optimality crit...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2007-11-01
|
Series: | BMC Evolutionary Biology |
Online Access: | http://www.biomedcentral.com/1471-2148/7/228 |
id |
doaj-c77342e2e91b4619b558075f007784ec |
---|---|
record_format |
Article |
spelling |
doaj-c77342e2e91b4619b558075f007784ec2021-09-02T02:38:06ZengBMCBMC Evolutionary Biology1471-21482007-11-017122810.1186/1471-2148-7-228An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principleMilinkovitch Michel CPesenti RafflaeleCatanzaro Daniele<p>Abstract</p> <p>Background</p> <p>Distance matrix methods constitute a major family of phylogenetic estimation methods, and the minimum evolution (ME) principle (aiming at recovering the phylogeny with shortest length) is one of the most commonly used optimality criteria for estimating phylogenetic trees. The major difficulty for its application is that the number of possible phylogenies grows exponentially with the number of taxa analyzed and the minimum evolution principle is known to belong to the <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1471-2148-7-228-i1"><m:semantics><m:mrow><m:mi mathvariant="script">N</m:mi><m:mi mathvariant="script">P</m:mi></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8xdX7Kaeeiuaafaaa@3888@</m:annotation></m:semantics></m:math></inline-formula>-hard class of problems.</p> <p>Results</p> <p>In this paper, we introduce an Ant Colony Optimization (ACO) algorithm to estimate phylogenies under the minimum evolution principle. ACO is an optimization technique inspired from the foraging behavior of real ant colonies. This behavior is exploited in artificial ant colonies for the search of approximate solutions to discrete optimization problems.</p> <p>Conclusion</p> <p>We show that the ACO algorithm is potentially competitive in comparison with state-of-the-art algorithms for the minimum evolution principle. This is the first application of an ACO algorithm to the phylogenetic estimation problem.</p> http://www.biomedcentral.com/1471-2148/7/228 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Milinkovitch Michel C Pesenti Rafflaele Catanzaro Daniele |
spellingShingle |
Milinkovitch Michel C Pesenti Rafflaele Catanzaro Daniele An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle BMC Evolutionary Biology |
author_facet |
Milinkovitch Michel C Pesenti Rafflaele Catanzaro Daniele |
author_sort |
Milinkovitch Michel C |
title |
An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle |
title_short |
An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle |
title_full |
An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle |
title_fullStr |
An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle |
title_full_unstemmed |
An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle |
title_sort |
ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle |
publisher |
BMC |
series |
BMC Evolutionary Biology |
issn |
1471-2148 |
publishDate |
2007-11-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Distance matrix methods constitute a major family of phylogenetic estimation methods, and the minimum evolution (ME) principle (aiming at recovering the phylogeny with shortest length) is one of the most commonly used optimality criteria for estimating phylogenetic trees. The major difficulty for its application is that the number of possible phylogenies grows exponentially with the number of taxa analyzed and the minimum evolution principle is known to belong to the <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1471-2148-7-228-i1"><m:semantics><m:mrow><m:mi mathvariant="script">N</m:mi><m:mi mathvariant="script">P</m:mi></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8xdX7Kaeeiuaafaaa@3888@</m:annotation></m:semantics></m:math></inline-formula>-hard class of problems.</p> <p>Results</p> <p>In this paper, we introduce an Ant Colony Optimization (ACO) algorithm to estimate phylogenies under the minimum evolution principle. ACO is an optimization technique inspired from the foraging behavior of real ant colonies. This behavior is exploited in artificial ant colonies for the search of approximate solutions to discrete optimization problems.</p> <p>Conclusion</p> <p>We show that the ACO algorithm is potentially competitive in comparison with state-of-the-art algorithms for the minimum evolution principle. This is the first application of an ACO algorithm to the phylogenetic estimation problem.</p> |
url |
http://www.biomedcentral.com/1471-2148/7/228 |
work_keys_str_mv |
AT milinkovitchmichelc anantcolonyoptimizationalgorithmforphylogeneticestimationundertheminimumevolutionprinciple AT pesentirafflaele anantcolonyoptimizationalgorithmforphylogeneticestimationundertheminimumevolutionprinciple AT catanzarodaniele anantcolonyoptimizationalgorithmforphylogeneticestimationundertheminimumevolutionprinciple AT milinkovitchmichelc antcolonyoptimizationalgorithmforphylogeneticestimationundertheminimumevolutionprinciple AT pesentirafflaele antcolonyoptimizationalgorithmforphylogeneticestimationundertheminimumevolutionprinciple AT catanzarodaniele antcolonyoptimizationalgorithmforphylogeneticestimationundertheminimumevolutionprinciple |
_version_ |
1721181206721069056 |