Redox Regulation of Cysteine-Dependent Enzymes in Neurodegeneration

Evidence of increased oxidative stress has been found in various neurodegenerative diseases and conditions. While it is unclear whether oxidative stress is a cause or effect, protein, lipid, and DNA have all been found to be susceptible to oxidant-induced modifications that alter their function. Res...

Full description

Bibliographic Details
Main Authors: Rodney P. Guttmann, Tamara J. Powell
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:International Journal of Cell Biology
Online Access:http://dx.doi.org/10.1155/2012/703164
Description
Summary:Evidence of increased oxidative stress has been found in various neurodegenerative diseases and conditions. While it is unclear whether oxidative stress is a cause or effect, protein, lipid, and DNA have all been found to be susceptible to oxidant-induced modifications that alter their function. Results of clinical trials based on the oxidative-stress theory have been mixed, though data continues to indicate that prevention of high levels of oxidative stress is beneficial for health and increases longevity. Due to the highly reactive nature of the sulfhydryl group, the focus of this paper is on the impact of oxidative stress on cysteine-dependent enzymes and how oxidative stress may contribute to neurological dysfunction through this selected group of proteins.
ISSN:1687-8876
1687-8884