PARP1 promoter links cell cycle progression with adaptation to oxidative environment
Although electrophiles are considered as detrimental to cells, accumulating recent evidence indicates that proliferating non-cancerous and particularly cancerous cells utilize these agents for pro-survival and cell cycle promoting signaling. Hence, the redox shift to mild oxidant release must be bal...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2018-09-01
|
Series: | Redox Biology |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2213231718302842 |
id |
doaj-c758880495404afcb014fa2441570c42 |
---|---|
record_format |
Article |
spelling |
doaj-c758880495404afcb014fa2441570c422020-11-24T21:50:06ZengElsevierRedox Biology2213-23172018-09-011815PARP1 promoter links cell cycle progression with adaptation to oxidative environmentJulita Pietrzak0Corinne M. Spickett1Tomasz Płoszaj2László Virág3Agnieszka Robaszkiewicz4Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, PolandSchool of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UKDepartment of Molecular Biology, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, PolandDepartment of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, HungaryDepartment of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Corresponding author.Although electrophiles are considered as detrimental to cells, accumulating recent evidence indicates that proliferating non-cancerous and particularly cancerous cells utilize these agents for pro-survival and cell cycle promoting signaling. Hence, the redox shift to mild oxidant release must be balanced by multiple defense mechanisms. Our latest findings demonstrate that cell cycle progression, which dictates oxidant level in stress-free conditions, determines PARP1 transcription. Growth modulating factors regulate CDK4/6-RBs-E2Fs axis. In cells arrested in G1 and G0, RB1-E2F1 and RBL2-E2F4 dimers recruit chromatin remodelers such as HDAC1, SWI/SNF and PRC2 to condense chromatin and turn off transcription. Release of retinoblastoma-based repressive complexes from E2F-dependent gene promoters in response to cell transition to S phase enables transcription of PARP1. This enzyme contributes to repair of oxidative DNA damage by supporting several strand break repair pathways and nucleotide or base excision repair pathways, as well as acting as a co-activator of transcription factors such as NRF2 and HIF1a, which control expression of antioxidant enzymes involved in removal of electrophiles and secondary metabolites. Furthermore, PARP1 is indispensible for transcription of the pro-survival kinases MAP2K6, ERK1/2 and AKT1, and for maintaining MAPK activity by suppressing transcription of the MAPK inhibitor, MPK1. In summary, cell cycle controlled PARP1 transcription helps cells to adapt to a pro-oxidant redox shift. Keywords: Cell proliferation, Redox homeostasis, Poly-ADP-ribose polymerase 1 (PARP1), Gene transcription, Signaling, DNA repairhttp://www.sciencedirect.com/science/article/pii/S2213231718302842 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Julita Pietrzak Corinne M. Spickett Tomasz Płoszaj László Virág Agnieszka Robaszkiewicz |
spellingShingle |
Julita Pietrzak Corinne M. Spickett Tomasz Płoszaj László Virág Agnieszka Robaszkiewicz PARP1 promoter links cell cycle progression with adaptation to oxidative environment Redox Biology |
author_facet |
Julita Pietrzak Corinne M. Spickett Tomasz Płoszaj László Virág Agnieszka Robaszkiewicz |
author_sort |
Julita Pietrzak |
title |
PARP1 promoter links cell cycle progression with adaptation to oxidative environment |
title_short |
PARP1 promoter links cell cycle progression with adaptation to oxidative environment |
title_full |
PARP1 promoter links cell cycle progression with adaptation to oxidative environment |
title_fullStr |
PARP1 promoter links cell cycle progression with adaptation to oxidative environment |
title_full_unstemmed |
PARP1 promoter links cell cycle progression with adaptation to oxidative environment |
title_sort |
parp1 promoter links cell cycle progression with adaptation to oxidative environment |
publisher |
Elsevier |
series |
Redox Biology |
issn |
2213-2317 |
publishDate |
2018-09-01 |
description |
Although electrophiles are considered as detrimental to cells, accumulating recent evidence indicates that proliferating non-cancerous and particularly cancerous cells utilize these agents for pro-survival and cell cycle promoting signaling. Hence, the redox shift to mild oxidant release must be balanced by multiple defense mechanisms. Our latest findings demonstrate that cell cycle progression, which dictates oxidant level in stress-free conditions, determines PARP1 transcription. Growth modulating factors regulate CDK4/6-RBs-E2Fs axis. In cells arrested in G1 and G0, RB1-E2F1 and RBL2-E2F4 dimers recruit chromatin remodelers such as HDAC1, SWI/SNF and PRC2 to condense chromatin and turn off transcription. Release of retinoblastoma-based repressive complexes from E2F-dependent gene promoters in response to cell transition to S phase enables transcription of PARP1. This enzyme contributes to repair of oxidative DNA damage by supporting several strand break repair pathways and nucleotide or base excision repair pathways, as well as acting as a co-activator of transcription factors such as NRF2 and HIF1a, which control expression of antioxidant enzymes involved in removal of electrophiles and secondary metabolites. Furthermore, PARP1 is indispensible for transcription of the pro-survival kinases MAP2K6, ERK1/2 and AKT1, and for maintaining MAPK activity by suppressing transcription of the MAPK inhibitor, MPK1. In summary, cell cycle controlled PARP1 transcription helps cells to adapt to a pro-oxidant redox shift. Keywords: Cell proliferation, Redox homeostasis, Poly-ADP-ribose polymerase 1 (PARP1), Gene transcription, Signaling, DNA repair |
url |
http://www.sciencedirect.com/science/article/pii/S2213231718302842 |
work_keys_str_mv |
AT julitapietrzak parp1promoterlinkscellcycleprogressionwithadaptationtooxidativeenvironment AT corinnemspickett parp1promoterlinkscellcycleprogressionwithadaptationtooxidativeenvironment AT tomaszpłoszaj parp1promoterlinkscellcycleprogressionwithadaptationtooxidativeenvironment AT laszlovirag parp1promoterlinkscellcycleprogressionwithadaptationtooxidativeenvironment AT agnieszkarobaszkiewicz parp1promoterlinkscellcycleprogressionwithadaptationtooxidativeenvironment |
_version_ |
1725885315179085824 |