Cyanobacteria net community production in the Baltic Sea as inferred from profiling <i>p</i>CO<sub>2</sub> measurements

<p>Organic matter production by cyanobacteria blooms is a major environmental concern for the Baltic Sea, as it promotes the spread of anoxic zones. Partial pressure of carbon dioxide (<span class="inline-formula"><i>p</i></span><span class="inline-for...

Full description

Bibliographic Details
Main Authors: J. D. Müller, B. Schneider, U. Gräwe, P. Fietzek, M. B. Wallin, A. Rutgersson, N. Wasmund, S. Krüger, G. Rehder
Format: Article
Language:English
Published: Copernicus Publications 2021-09-01
Series:Biogeosciences
Online Access:https://bg.copernicus.org/articles/18/4889/2021/bg-18-4889-2021.pdf
id doaj-c758045a37a8490a94ab533168a34d41
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author J. D. Müller
J. D. Müller
B. Schneider
U. Gräwe
P. Fietzek
M. B. Wallin
M. B. Wallin
A. Rutgersson
N. Wasmund
S. Krüger
G. Rehder
spellingShingle J. D. Müller
J. D. Müller
B. Schneider
U. Gräwe
P. Fietzek
M. B. Wallin
M. B. Wallin
A. Rutgersson
N. Wasmund
S. Krüger
G. Rehder
Cyanobacteria net community production in the Baltic Sea as inferred from profiling <i>p</i>CO<sub>2</sub> measurements
Biogeosciences
author_facet J. D. Müller
J. D. Müller
B. Schneider
U. Gräwe
P. Fietzek
M. B. Wallin
M. B. Wallin
A. Rutgersson
N. Wasmund
S. Krüger
G. Rehder
author_sort J. D. Müller
title Cyanobacteria net community production in the Baltic Sea as inferred from profiling <i>p</i>CO<sub>2</sub> measurements
title_short Cyanobacteria net community production in the Baltic Sea as inferred from profiling <i>p</i>CO<sub>2</sub> measurements
title_full Cyanobacteria net community production in the Baltic Sea as inferred from profiling <i>p</i>CO<sub>2</sub> measurements
title_fullStr Cyanobacteria net community production in the Baltic Sea as inferred from profiling <i>p</i>CO<sub>2</sub> measurements
title_full_unstemmed Cyanobacteria net community production in the Baltic Sea as inferred from profiling <i>p</i>CO<sub>2</sub> measurements
title_sort cyanobacteria net community production in the baltic sea as inferred from profiling <i>p</i>co<sub>2</sub> measurements
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2021-09-01
description <p>Organic matter production by cyanobacteria blooms is a major environmental concern for the Baltic Sea, as it promotes the spread of anoxic zones. Partial pressure of carbon dioxide (<span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span>) measurements carried out on Ships of Opportunity (SOOP) since 2003 have proven to be a powerful tool to resolve the carbon dynamics of the blooms in space and time. However, SOOP measurements lack the possibility to directly constrain depth-integrated net community production (NCP) in moles of carbon per surface area due to their restriction to the sea surface. This study tackles the knowledge gap through (1) providing an NCP best guess for an individual cyanobacteria bloom based on repeated profiling measurements of <span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> and (2) establishing an algorithm to accurately reconstruct depth-integrated NCP from surface <span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> observations in combination with modelled temperature profiles.</p> <p>Goal (1) was achieved by deploying state-of-the-art sensor technology from a small-scale sailing vessel. The low-cost and flexible platform enabled observations covering an entire bloom event that occurred in July–August 2018 in the Eastern Gotland Sea. For the biogeochemical interpretation, recorded <span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> profiles were converted to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">T</mi><mo>*</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="15pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0aa6ed545539018b04e587469b87b564"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4889-2021-ie00001.svg" width="15pt" height="14pt" src="bg-18-4889-2021-ie00001.png"/></svg:svg></span></span>, which is the dissolved inorganic carbon concentration normalised to alkalinity. We found that the investigated bloom event was dominated by <i>Nodularia</i> and had many biogeochemical characteristics in common with blooms in previous years. In particular, it lasted for about 3 weeks, caused a <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">T</mi><mo>*</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="15pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46ef4e5995798c3c8366e822076bc179"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4889-2021-ie00002.svg" width="15pt" height="14pt" src="bg-18-4889-2021-ie00002.png"/></svg:svg></span></span> drawdown of 90 <span class="inline-formula">µmol kg<sup>−1</sup></span>, and was accompanied by a sea surface temperature increase of 10 <span class="inline-formula"><sup>∘</sup>C</span>. The novel finding of this study is the vertical extension of the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">T</mi><mo>*</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="15pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="45474e6522ee722d062e80aacb124fb4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4889-2021-ie00003.svg" width="15pt" height="14pt" src="bg-18-4889-2021-ie00003.png"/></svg:svg></span></span> drawdown up to the compensation depth located at around 12 <span class="inline-formula">m</span>. Integration of the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">T</mi><mo>*</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="15pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7af7f30c300500f14d3fe798d6441831"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4889-2021-ie00004.svg" width="15pt" height="14pt" src="bg-18-4889-2021-ie00004.png"/></svg:svg></span></span> drawdown across this depth and correction for vertical fluxes leads to an NCP best guess of <span class="inline-formula">∼1.2</span> <span class="inline-formula">mol m<sup>−2</sup></span> over the productive period.</p> <p>Addressing goal (2), we combined modelled hydrographical profiles with surface <span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> observations recorded by SOOP <i>Finnmaid</i> within the study area. Introducing the temperature penetration depth (TPD) as a new parameter to integrate SOOP observations across depth, we achieve an NCP reconstruction that agrees to the best guess within 10 <span class="inline-formula">%</span>, which is considerably better than the reconstruction based on a classical mixed-layer depth constraint.</p> <p>Applying the TPD approach to almost 2 decades of surface <span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> observations available for the Baltic Sea bears the potential to provide new insights into the control and long-term trends of cyanobacteria NCP. This understanding is key for an effective design and monitoring of conservation measures aiming at a Good Environmental Status of the Baltic Sea.</p>
url https://bg.copernicus.org/articles/18/4889/2021/bg-18-4889-2021.pdf
work_keys_str_mv AT jdmuller cyanobacterianetcommunityproductioninthebalticseaasinferredfromprofilingipicosub2submeasurements
AT jdmuller cyanobacterianetcommunityproductioninthebalticseaasinferredfromprofilingipicosub2submeasurements
AT bschneider cyanobacterianetcommunityproductioninthebalticseaasinferredfromprofilingipicosub2submeasurements
AT ugrawe cyanobacterianetcommunityproductioninthebalticseaasinferredfromprofilingipicosub2submeasurements
AT pfietzek cyanobacterianetcommunityproductioninthebalticseaasinferredfromprofilingipicosub2submeasurements
AT mbwallin cyanobacterianetcommunityproductioninthebalticseaasinferredfromprofilingipicosub2submeasurements
AT mbwallin cyanobacterianetcommunityproductioninthebalticseaasinferredfromprofilingipicosub2submeasurements
AT arutgersson cyanobacterianetcommunityproductioninthebalticseaasinferredfromprofilingipicosub2submeasurements
AT nwasmund cyanobacterianetcommunityproductioninthebalticseaasinferredfromprofilingipicosub2submeasurements
AT skruger cyanobacterianetcommunityproductioninthebalticseaasinferredfromprofilingipicosub2submeasurements
AT grehder cyanobacterianetcommunityproductioninthebalticseaasinferredfromprofilingipicosub2submeasurements
_version_ 1717763497605988352
spelling doaj-c758045a37a8490a94ab533168a34d412021-09-07T11:57:04ZengCopernicus PublicationsBiogeosciences1726-41701726-41892021-09-01184889491710.5194/bg-18-4889-2021Cyanobacteria net community production in the Baltic Sea as inferred from profiling <i>p</i>CO<sub>2</sub> measurementsJ. D. Müller0J. D. Müller1B. Schneider2U. Gräwe3P. Fietzek4M. B. Wallin5M. B. Wallin6A. Rutgersson7N. Wasmund8S. Krüger9G. Rehder10Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, GermanyEnvironmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, SwitzerlandDepartment of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, GermanyDepartment of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, GermanyKongsberg Maritime Germany GmbH, Hamburg, GermanyDepartment of Earth Sciences, Uppsala University, Uppsala, SwedenDepartment of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, SwedenDepartment of Earth Sciences, Uppsala University, Uppsala, SwedenDepartment of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, GermanyDepartment of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, GermanyDepartment of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany<p>Organic matter production by cyanobacteria blooms is a major environmental concern for the Baltic Sea, as it promotes the spread of anoxic zones. Partial pressure of carbon dioxide (<span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span>) measurements carried out on Ships of Opportunity (SOOP) since 2003 have proven to be a powerful tool to resolve the carbon dynamics of the blooms in space and time. However, SOOP measurements lack the possibility to directly constrain depth-integrated net community production (NCP) in moles of carbon per surface area due to their restriction to the sea surface. This study tackles the knowledge gap through (1) providing an NCP best guess for an individual cyanobacteria bloom based on repeated profiling measurements of <span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> and (2) establishing an algorithm to accurately reconstruct depth-integrated NCP from surface <span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> observations in combination with modelled temperature profiles.</p> <p>Goal (1) was achieved by deploying state-of-the-art sensor technology from a small-scale sailing vessel. The low-cost and flexible platform enabled observations covering an entire bloom event that occurred in July–August 2018 in the Eastern Gotland Sea. For the biogeochemical interpretation, recorded <span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> profiles were converted to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">T</mi><mo>*</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="15pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0aa6ed545539018b04e587469b87b564"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4889-2021-ie00001.svg" width="15pt" height="14pt" src="bg-18-4889-2021-ie00001.png"/></svg:svg></span></span>, which is the dissolved inorganic carbon concentration normalised to alkalinity. We found that the investigated bloom event was dominated by <i>Nodularia</i> and had many biogeochemical characteristics in common with blooms in previous years. In particular, it lasted for about 3 weeks, caused a <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">T</mi><mo>*</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="15pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46ef4e5995798c3c8366e822076bc179"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4889-2021-ie00002.svg" width="15pt" height="14pt" src="bg-18-4889-2021-ie00002.png"/></svg:svg></span></span> drawdown of 90 <span class="inline-formula">µmol kg<sup>−1</sup></span>, and was accompanied by a sea surface temperature increase of 10 <span class="inline-formula"><sup>∘</sup>C</span>. The novel finding of this study is the vertical extension of the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">T</mi><mo>*</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="15pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="45474e6522ee722d062e80aacb124fb4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4889-2021-ie00003.svg" width="15pt" height="14pt" src="bg-18-4889-2021-ie00003.png"/></svg:svg></span></span> drawdown up to the compensation depth located at around 12 <span class="inline-formula">m</span>. Integration of the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">T</mi><mo>*</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="15pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7af7f30c300500f14d3fe798d6441831"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4889-2021-ie00004.svg" width="15pt" height="14pt" src="bg-18-4889-2021-ie00004.png"/></svg:svg></span></span> drawdown across this depth and correction for vertical fluxes leads to an NCP best guess of <span class="inline-formula">∼1.2</span> <span class="inline-formula">mol m<sup>−2</sup></span> over the productive period.</p> <p>Addressing goal (2), we combined modelled hydrographical profiles with surface <span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> observations recorded by SOOP <i>Finnmaid</i> within the study area. Introducing the temperature penetration depth (TPD) as a new parameter to integrate SOOP observations across depth, we achieve an NCP reconstruction that agrees to the best guess within 10 <span class="inline-formula">%</span>, which is considerably better than the reconstruction based on a classical mixed-layer depth constraint.</p> <p>Applying the TPD approach to almost 2 decades of surface <span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> observations available for the Baltic Sea bears the potential to provide new insights into the control and long-term trends of cyanobacteria NCP. This understanding is key for an effective design and monitoring of conservation measures aiming at a Good Environmental Status of the Baltic Sea.</p>https://bg.copernicus.org/articles/18/4889/2021/bg-18-4889-2021.pdf