Cyanobacteria net community production in the Baltic Sea as inferred from profiling <i>p</i>CO<sub>2</sub> measurements
<p>Organic matter production by cyanobacteria blooms is a major environmental concern for the Baltic Sea, as it promotes the spread of anoxic zones. Partial pressure of carbon dioxide (<span class="inline-formula"><i>p</i></span><span class="inline-for...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-09-01
|
Series: | Biogeosciences |
Online Access: | https://bg.copernicus.org/articles/18/4889/2021/bg-18-4889-2021.pdf |
Summary: | <p>Organic matter production by cyanobacteria blooms is a major environmental
concern for the Baltic Sea, as it promotes the spread of anoxic zones. Partial
pressure of carbon dioxide (<span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span>) measurements carried out on Ships
of Opportunity (SOOP) since 2003 have proven to be a powerful tool to resolve
the carbon dynamics of the blooms in space and time. However, SOOP
measurements lack the possibility to directly constrain depth-integrated net
community production (NCP) in moles of carbon per surface area due to their
restriction to the sea surface. This study tackles the knowledge gap through
(1) providing an NCP best guess for an individual cyanobacteria bloom based
on repeated profiling measurements of <span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> and (2) establishing an
algorithm to accurately reconstruct depth-integrated NCP from surface
<span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> observations in combination with modelled temperature profiles.</p>
<p>Goal (1) was achieved by deploying state-of-the-art sensor technology from
a small-scale sailing vessel. The low-cost and flexible platform enabled
observations covering an entire bloom event that occurred in July–August 2018
in the Eastern Gotland Sea. For the biogeochemical interpretation, recorded
<span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> profiles were converted to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">T</mi><mo>*</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="15pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0aa6ed545539018b04e587469b87b564"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4889-2021-ie00001.svg" width="15pt" height="14pt" src="bg-18-4889-2021-ie00001.png"/></svg:svg></span></span>, which is the
dissolved inorganic carbon concentration normalised to alkalinity. We found
that the investigated bloom event was dominated by <i>Nodularia</i> and had
many biogeochemical characteristics in common with blooms in previous
years. In particular, it lasted for about 3 weeks, caused a
<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">T</mi><mo>*</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="15pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46ef4e5995798c3c8366e822076bc179"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4889-2021-ie00002.svg" width="15pt" height="14pt" src="bg-18-4889-2021-ie00002.png"/></svg:svg></span></span> drawdown of 90 <span class="inline-formula">µmol kg<sup>−1</sup></span>, and was accompanied
by a sea surface temperature increase of 10 <span class="inline-formula"><sup>∘</sup>C</span>. The novel
finding of this study is the vertical extension of the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">T</mi><mo>*</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="15pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="45474e6522ee722d062e80aacb124fb4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4889-2021-ie00003.svg" width="15pt" height="14pt" src="bg-18-4889-2021-ie00003.png"/></svg:svg></span></span>
drawdown up to the compensation depth located at around
12 <span class="inline-formula">m</span>. Integration of the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>C</mi><mi mathvariant="normal">T</mi><mo>*</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="15pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7af7f30c300500f14d3fe798d6441831"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-18-4889-2021-ie00004.svg" width="15pt" height="14pt" src="bg-18-4889-2021-ie00004.png"/></svg:svg></span></span> drawdown across this depth
and correction for vertical fluxes leads to an NCP best guess of <span class="inline-formula">∼1.2</span> <span class="inline-formula">mol m<sup>−2</sup></span> over the productive
period.</p>
<p>Addressing goal (2), we combined modelled hydrographical profiles with surface
<span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span> observations recorded by SOOP <i>Finnmaid</i> within the
study area. Introducing the temperature penetration depth (TPD) as a new
parameter to integrate SOOP observations across depth, we achieve an NCP
reconstruction that agrees to the best guess within 10 <span class="inline-formula">%</span>, which is
considerably better than the reconstruction based on a classical mixed-layer
depth constraint.</p>
<p>Applying the TPD approach to almost 2 decades of surface <span class="inline-formula"><i>p</i></span><span class="inline-formula">CO<sub>2</sub></span>
observations available for the Baltic Sea bears the potential to provide new
insights into the control and long-term trends of cyanobacteria NCP. This
understanding is key for an effective design and monitoring of conservation
measures aiming at a Good Environmental Status of the Baltic Sea.</p> |
---|---|
ISSN: | 1726-4170 1726-4189 |