Alternative Polyadenylation and Salicylic Acid Modulate Root Responses to Low Nitrogen Availability

Nitrogen (N) is probably the most important macronutrient and its scarcity limits plant growth, development and fitness. N starvation response has been largely studied by transcriptomic analyses, but little is known about the role of alternative polyadenylation (APA) in such response. In this work,...

Full description

Bibliographic Details
Main Authors: Carlos M. Conesa, Angela Saez, Sara Navarro-Neila, Laura de Lorenzo, Arthur G. Hunt, Edgar B. Sepúlveda, Roberto Baigorri, Jose M. Garcia-Mina, Angel M. Zamarreño, Soledad Sacristán, Juan C. del Pozo
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/9/2/251
Description
Summary:Nitrogen (N) is probably the most important macronutrient and its scarcity limits plant growth, development and fitness. N starvation response has been largely studied by transcriptomic analyses, but little is known about the role of alternative polyadenylation (APA) in such response. In this work, we show that N starvation modifies poly(A) usage in a large number of transcripts, some of them mediated by FIP1, a component of the polyadenylation machinery. Interestingly, the number of mRNAs isoforms with poly(A) tags located in protein-coding regions or 5&#8242;-UTRs significantly increases in response to N starvation. The set of genes affected by APA in response to N deficiency is enriched in N-metabolism, oxidation-reduction processes, response to stresses, and hormone responses, among others. A hormone profile analysis shows that the levels of salicylic acid (SA), a phytohormone that reduces nitrate accumulation and root growth, increase significantly upon N starvation. Meta-analyses of APA-affected and <i>fip1-2</i>-deregulated genes indicate a connection between the nitrogen starvation response and salicylic acid (SA) signaling. Genetic analyses show that SA may be important for preventing the overgrowth of the root system in low N environments. This work provides new insights on how plants interconnect different pathways, such as defense-related hormonal signaling and the regulation of genomic information by APA, to fine-tune the response to low N availability.
ISSN:2223-7747