Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer
While water electrolysis offers a renewable means to obtain H2, it is necessary to understand the roles adopted by catalytic components. Here, authors explore a heterostructured MoSe2/perovskite oxide catalyst that shows multidirectional charge transfer to boost electrocatalytic water splitting.
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-07-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-021-24829-8 |
Summary: | While water electrolysis offers a renewable means to obtain H2, it is necessary to understand the roles adopted by catalytic components. Here, authors explore a heterostructured MoSe2/perovskite oxide catalyst that shows multidirectional charge transfer to boost electrocatalytic water splitting. |
---|---|
ISSN: | 2041-1723 |